Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)với \(a,b,c,d\in R\)
Theo đề , ta thay lần lượt P(1) , P(2) , P(3) , P(4) được hệ sau : (Mình không viết dấu ngoặc nhọn được nên mình trình bày theo hàng)
\(1+a+b+c+d=1\)
\(16+8a+4b+2c+d=4\)
\(81+27a+9b+3c+d=9\)
\(256+64a+16b+4c+d=16\)
Giải hệ trên được a = -10 , b = 36 , c = -50 , d = 24
Vậy \(P\left(x\right)=x^4-10x^3+36x^2-50x+24\)
Suy ra P(5) = 49
Cảm ơn bạn Hoàng Lê Bảo Ngọc. Có ai có cách giải không dùng hệ phương trình không ạ?
\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(1-1\right)\)(vì a-b=1)
\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab\)
\(F=a^3+a^2-b^3+b^2+ab\)
\(F=\left(a^3-b^3\right)+a^2+b^2+ab\)
\(F=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)
\(F=\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)(vì a-b=1)
\(F=2\left(a^2+ab+b^2\right)\)
\(F=2\left(a^2-2ab+b^2+3ab\right)\)
\(F=2\left(\left(a-b\right)^2+3ab\right)\)
\(F=2\left(1+3ab\right)\)
\(F=2+6ab\)
ta có x+y+z=0
=> \(\left(x+y+z\right)^2=0\)
\(< =>x^2+y^2+z^2+2xy+2xz+2yx=0\)
\(< =>x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(< =>x^2+y^2+z^2+2.0=0\)(vì xy+xz+yz=0)
\(< =>x^2+y^2+z^2=0\)
\(< =>\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}< =>x=y=z=0}\)
thay x=y=z=0 vào
\(K=\left(x-1\right)^{2014}+y^{2015}+\left(z+1\right)^{2016}\)
\(K=\left(0-1\right)^{2014}+0^{2015}+\left(0+1\right)^{2016}\)
\(K=1+0+1=2\)
\(\)
Bài 1:
F=(x-1)3-x2(x-3)
=x3-3x2+3x-1-x3-3x2
=(x3-x3)-(3x2-3x2)+3x-1
=3x-1
Bài 2:
a)(x+3)2=(x-2)(x+4)
<=>x2+6x+9=x2+2x-8
<=>4x=-17
<=>x=-17/4
b)(x+4)2=2x2+16
<=>x2+8x+16=2x2+16
<=>8x=x2
<=>8x-x2=0
<=>x(8-x)=0
<=>x=0 hoặc x=8
Bài 1:
F=(x-1)3-x2(x-3)=x3-3x2+3x-1-x3+3x2=3x-1
Bài 2:
a, <=>(x+3)2-(x-2)(x-4)=0
<=>x^2+6x+9-x^2-4x+2x+8=0
<=>4x+17=0
<=>x=-4,25
b,<=>(x+4)2-2x2-16=0
<=>x2+8x+16-2x2-16=0
<=>8x-x2=0
<=>x(8-x)=0
<=>\(\orbr{\begin{cases}x=0\\x=8\end{cases}}\)
Bài 3:(đợi một xíu)
Đặt
\(Q\left(x\right)=P\left(x\right)+R\left(x\right)\)
Sao cho bậc của R(x) phải nhỏ hơn bậc của P(x), và Q(x) có nghiệm là 1;2;....;2016
Từ đó ta có
\(Q\left(x\right)=P\left(x\right)+a_0x^{2015}+a_1x^{2014}+...+a_{2014}x+a_{2015}\)
Ta tìm các giá trị \(a_0,a_1,...,a_{2015}\)sao cho \(Q\left(1\right)=Q\left(2\right)=...=Q\left(2016\right)=0\). Hay
\(a_0+a_1+...+a_{2015}+1=0\)
\(2^{2016}a_0+2^{2015}a_1+...+a_{2015}+2^2=0\)
................................................................................
\(2016^{2016}a_0+2016^{2015}a_1+...+a_{2015}+2016^2=0\)
\(\Rightarrow a_0=a_1=...=a_{2012}=a_{2014}=a_{2015}=0\)và \(a_{2013}=-1\)
\(\Rightarrow R\left(x\right)=-x^2\)
\(\Rightarrow Q\left(x\right)=P\left(x\right)-x^2\)
Vì \(1;2;3;...;2016\)là nghiệm của Q(x), mà bậc của Q(x) là 2016 và có hệ số \(x^{2016}\)bằng 1 nên
\(Q\left(x\right)=P\left(x\right)-x^2=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)+x^2\)
\(\Rightarrow P\left(2017\right)=\left(2017-1\right)\left(2017-2\right)...\left(2017-2016\right)+2017^2\)
Tự bấm máy tính đi nhé
Bài này nhé bài kia nhầm 1 chỗ
Đặt
\(Q\left(x\right)=P\left(x\right)+R\left(x\right)\)
Sao cho bậc của R(x) phải nhỏ hơn bậc của P(x), và Q(x) có nghiệm là 1;2;....;2016
Từ đó ta có
\(Q\left(x\right)=P\left(x\right)+a_0x^{2015}+a_1x^{2014}+...+a_{2014}x+a_{2015}\)
Ta tìm các giá trị \(a_0,a_1,...,a_{2015}\)sao cho \(Q\left(1\right)=Q\left(2\right)=...=Q\left(2016\right)=0\). Hay
\(a_0+a_1+...+a_{2015}+1=0\)
\(2^{2016}a_0+2^{2015}a_1+...+a_{2015}+2^2=0\)
................................................................................
\(2016^{2016}a_0+2016^{2015}a_1+...+a_{2015}+2016^2=0\)
\(\Rightarrow a_0=a_1=...=a_{2012}=a_{2013}=a_{2015}=0\)và \(a_{2014}=-1\)
\(\Rightarrow R\left(x\right)=-x^2\)
\(\Rightarrow Q\left(x\right)=P\left(x\right)-x^2\)
Vì \(1;2;3;...;2016\)là nghiệm của Q(x), mà bậc của Q(x) là 2016 và có hệ số \(x^{2016}\)bằng 1 nên
\(Q\left(x\right)=P\left(x\right)-x^2=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)...\left(x-2016\right)+x^2\)
\(\Rightarrow P\left(2017\right)=\left(2017-1\right)\left(2017-2\right)...\left(2017-2016\right)+2017^2\)
Tự bấm máy tính đi nhé