K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5

 1 đến 16, mỗi số được tô 1 màu và cả hai màu đều được dùng. Sau khi tô, bạn A...

Trả lời:

  • Vì có 16 số, mỗi số chỉ tô 1 màu, cả hai màu đều được sử dụng, nên số lượng số màu xanh + số lượng số màu đỏ = 16, mỗi màu ít nhất 1 số.
  • Nếu đề hỏi về số cách tô:
    • Số cách tô = 2^16 (mỗi số 2 lựa chọn) – 2 (loại trường hợp chỉ tô 1 màu) = 65536 – 2 = 65534 cách.
 Cho hình vuông 12 x 12, được chia thành lưới các hình vuông đơn vị. Mỗi đỉnh của hình vuông đơn vị này được tô bằng một trong hai màu xanh đỏ. Có tất cả 111 đỉnh màu đỏ. Hai trong số những đỉnh màu đỏ này nằm ở đỉnh hình vuông lớn, 22 đỉnh màu đỏ khác nằm ở trên cạnh của hình vuông lớn (không trùng với đỉnh của hình vuông lớn). Hình vuông đơn vị được tô màu theo các...
Đọc tiếp

 Cho hình vuông 12 x 12, được chia thành lưới các hình vuông đơn vị. Mỗi đỉnh của hình vuông đơn vị này được tô bằng một trong hai màu xanh đỏ. Có tất cả 111 đỉnh màu đỏ. Hai trong số những đỉnh màu đỏ này nằm ở đỉnh hình vuông lớn, 22 đỉnh màu đỏ khác nằm ở trên cạnh của hình vuông lớn (không trùng với đỉnh của hình vuông lớn). Hình vuông đơn vị được tô màu theo các quy luật sau: cạnh có hai đầu mút màu đỏ được tô màu đỏ, cạnh có 2 đầu mút màu xanh được tô màu xanh, cạnh có một đầu mút màu đỏ và một đầu mú màu xanh thì được tô màu vàng. Giả sử có tất cả 66 cạnh vàng. Hỏi có bao nhiêu cạnh màu xanh?

                                          (Trích đề thi vào 10 chuyên Trần Phú, Hải Phòng, năm học 2012-2013)

0
21 tháng 11 2017

Bài này không khó chỉ cần sử dụng nguyên tắc Đirichle
+ Dễ dàng thấy có ít nhất 6 điểm cùng màu
+ Với 6 điểm này, xét các đoạn thảng nối một điểm A với các điểm còn lại ;) tồn tại ba đoạn cùng màu giả sử là AB, AC, AD. Khi đó một trong bốn tam giác ABC, ACD, ABD, BCD là tam giác cần tìm
(bài toán này chỉ hay ở chỗ cho nhiều màu làm học sinh ... hãi nhưng nếu nắm chắc cơ bản thì okie ngay!)
Em khoái nhứt là làm tổ hợp trên diễn đàn vì không phải đánh Latex

21 tháng 11 2017

Bạn ơi, bản chất ý bạn nói thì mik hiểu rõ nhưng mik cần nhờ bạn trình bày chi tiết giùm mik(ko biết cách trình bày ý mà)

Thanks bạn nhìu nha.

15 tháng 6 2015

bye cả  nhà!! off đây !ngủ cho khỏe! đòng ý nhấn ctrl+W

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13...
Đọc tiếp

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,

2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm

3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương

4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá\(\frac{\sqrt{3}}{3}cm^2\) và có một góc nhỏ hơn 45o

0
1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13...
Đọc tiếp

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,

2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm

3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương

4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá√33 cm2 và có một góc nhỏ hơn 45o

0
1.Trên bảng cho 3 số \(\sqrt{2},2,\frac{1}{\sqrt{2}}\). Mỗi lần xóa đi 2 số a và b trong 3 số trên thì ta thêm vào 2 số mới là \(\frac{a+b}{\sqrt{2}}\)và \(\frac{\left|a-b\right|}{\sqrt{2}}\)CMR dù ta có xóa đi bao nhiêu lần nữa thì vẫn ko tồn tại một lúc 3 số \(\frac{1}{2\sqrt{2}},1+\sqrt{2},\sqrt{2}\)2. Trên bảng cho 4 số . Mỗi lần thay 2 số a và b thành hai số \(a^2+b^2+\sqrt{a^2+b^2}\)và \(a^2+b^2-\sqrt{a^2+b^2}\)Gỉa...
Đọc tiếp

1.Trên bảng cho 3 số \(\sqrt{2},2,\frac{1}{\sqrt{2}}\). Mỗi lần xóa đi 2 số a và b trong 3 số trên thì ta thêm vào 2 số mới là \(\frac{a+b}{\sqrt{2}}\)và \(\frac{\left|a-b\right|}{\sqrt{2}}\)

CMR dù ta có xóa đi bao nhiêu lần nữa thì vẫn ko tồn tại một lúc 3 số \(\frac{1}{2\sqrt{2}},1+\sqrt{2},\sqrt{2}\)

2. Trên bảng cho 4 số . Mỗi lần thay 2 số a và b thành hai số \(a^2+b^2+\sqrt{a^2+b^2}\)và \(a^2+b^2-\sqrt{a^2+b^2}\)

Gỉa sử ban đầu có 4 số 2,3,4,5 thì sau một số lần thực hiện như vậy có thể có được 4 số đều nhỏ hơn 1 không. vì sao?

3. Trên một hòn đảo có một loài tắc kè sinh sống, chúng có 3 màu xanh, đỏ ,tím. Tất cả có 2011 con màu xanh, 2012 con màu đỏ và 2013 con màu tím. Để lẩn trốn và săn mói thì chúng đổi màu như sau

-Nếu 2 con khác màu gặp nhau thì chúng cùng biến đỗi sang màu thứ ba

- Nếu 2 con cùng màu gặp nhau thì chúng giữ nguyên màu

Có khi nào tất cả con tắc kè cùng màu được không. Vì sao?

0