\(Bai1:\)Rút gọn\(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

\(P=\frac{\sqrt{\left(\sqrt{a-4}\right)^2+2.2.\sqrt{a-4}+4}+\sqrt{\left(\sqrt{a-4}\right)^2-2.2.\sqrt{a-4}+4}}{\sqrt{1^2-2.\frac{4}{a}}+\frac{4^2}{a^2}}\)

=\(\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)

=\(\frac{|\sqrt{a-4}+2|+|\sqrt{a-4}-2|}{|1-\frac{4}{a}|}\)

=\(\frac{a-4+2+a-4-2}{1-\frac{4}{a}}\)

=\(\frac{2a-8}{\frac{a-4}{a}}\)

=\(\frac{2.\left(a-4\right)}{\frac{a-4}{a}}\)

=\(2.\left(a-4\right).\frac{a}{a-4}\)

=2a

(ĐKXĐ: a khác 4)

23 tháng 7 2016

Bài 1

a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)    (ĐK : x\(\ge0\) ; x\(\ne\) 1)

        \(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)

         \(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)

         \(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)

Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)

Mà Ư(2)={-1;1;2;-1}

=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)

Ta có bảng sau:

\(\sqrt{a}-1\)1-12-2
a409\(\sqrt{a}=-1\) (ktm)

vậy a={0;4;9} thì P nguyên

23 tháng 7 2016

Bài 2

  \(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)

      \(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)

     \(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)

      \(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)

     \(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)

     \(=\frac{2a}{\sqrt{a-4}}\)

5 tháng 9 2016

khó !!!

5 tháng 9 2016

Cứ quy đồng là ra à. Làm biếng trình bày quá. Nên cho bạn đáp số thôi nhé

a/ \(\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)

b/ x = 3 và A = 4

NV
5 tháng 3 2019

2/

a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)

b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)

Dấu "=" khi \(a=b=\frac{1}{4}\)

c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm

Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)

Cộng vế với vế ta được:

\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)

Dấu "=" khi \(x=y=z\)

d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)

\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)

e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)

\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)

5 tháng 3 2019

@Akai Haruma Cô giúp em với ạ!!!

2 tháng 7 2018

a)    ĐK:  \(a\ge4\)

  \(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)

\(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)

\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{\left|1-\frac{4}{a}\right|}\)

\(=\frac{\sqrt{a-4}+2+\left|\sqrt{a-4}-2\right|}{1-\frac{4}{a}}\)

Nếu \(4\le a< 8\)thì:  \(P=\frac{\sqrt{a-4}+2+2-\sqrt{a-4}}{1-\frac{4}{a}}=\frac{4}{\frac{a-4}{a}}=\frac{4a}{a-4}\)

Nếu  \(a\ge8\)thì:  \(P=\frac{\sqrt{a-4}+2+\sqrt{a-4}-2}{1-\frac{4}{a}}=\frac{2\sqrt{a-4}}{\frac{a-4}{a}}=\frac{2a\sqrt{a-4}}{a-4}\)

27 tháng 7 2018

KHÔNG BIẾT

14 tháng 7 2017

cái tử  : trong mỗi cái dấu căn trừ 1 rồi cộng 1 sẽ ra HĐT

cái mẫu là 1 hằng đẳng thức nhớ đk x>1