Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2007}-\dfrac{1}{2008}=1-\dfrac{1}{2008}=\dfrac{2007}{2008}\)
b: \(Q=\dfrac{7}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2009\cdot2011}\right)\)
\(=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
\(=\dfrac{7}{2}\cdot\dfrac{2010}{2011}\simeq3,50\)
1.Tính hợp lý:
a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65
Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6
Bài 1:
a) \(\dfrac{2}{5}\cdot x-\dfrac{1}{4}=\dfrac{1}{10}\)
\(\dfrac{2}{5}\cdot x=\dfrac{1}{10}+\dfrac{1}{4}\)
\(\dfrac{2}{5}\cdot x=\dfrac{7}{20}\)
\(x=\dfrac{7}{20}:\dfrac{2}{5}\)
\(x=\dfrac{7}{8}\)
Vậy \(x=\dfrac{7}{8}\).
b) \(\dfrac{3}{5}=\dfrac{24}{x}\)
\(x=\dfrac{5\cdot24}{3}\)
\(x=40\)
Vậy \(x=40\).
c) \(\left(2x-3\right)^2=16\)
\(\left(2x-3\right)^2=4^2\)
\(\circledast\)TH1: \(2x-3=4\\ 2x=4+3\\ 2x=7\\ x=\dfrac{7}{2}\)
\(\circledast\)TH2: \(2x-3=-4\\ 2x=-4+3\\ 2x=-1\\ x=\dfrac{-1}{2}\)
Vậy \(x\in\left\{\dfrac{7}{2};\dfrac{-1}{2}\right\}\).
Bài 2:
a) \(25\%-4\dfrac{2}{5}+0.3:\dfrac{6}{5}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}:\dfrac{6}{5}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}\cdot\dfrac{5}{6}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{1}{4}\)
\(=\dfrac{5}{20}-\dfrac{88}{20}+\dfrac{5}{20}\)
\(=\dfrac{5-88+5}{20}\)
\(=\dfrac{78}{20}=\dfrac{39}{10}\)
b) \(\left(\dfrac{1}{6}-\dfrac{1}{5^2}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{1}{6}-\dfrac{1}{25}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{1}{6}-\dfrac{1}{5}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{5}{30}-\dfrac{6}{30}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{5-6+1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=0\cdot\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=0\)
Bài 3:
a) \(\dfrac{4}{19}\cdot\dfrac{-3}{7}+\dfrac{-3}{7}\cdot\dfrac{15}{19}\)
\(=\dfrac{-3}{7}\left(\dfrac{4}{19}+\dfrac{15}{19}\right)\)
\(=\dfrac{-3}{7}\cdot1\)
\(=\dfrac{-3}{7}\)
b) \(7\dfrac{5}{9}-\left(2\dfrac{3}{4}+3\dfrac{5}{9}\right)\)
\(=\dfrac{68}{9}-\dfrac{11}{4}-\dfrac{32}{9}\)
\(=\dfrac{68}{9}-\dfrac{32}{9}-\dfrac{11}{4}\)
\(=4-\dfrac{11}{4}\)
\(=\dfrac{16}{4}-\dfrac{11}{4}\)
\(\dfrac{5}{4}\)
Bài 4:
\(\dfrac{4}{12\cdot14}+\dfrac{4}{14\cdot16}+\dfrac{4}{16\cdot18}+...+\dfrac{4}{58\cdot60}\)
\(=2\left(\dfrac{1}{12\cdot14}+\dfrac{1}{14\cdot16}+\dfrac{1}{16\cdot18}+...+\dfrac{1}{58\cdot60}\right)\)
\(=2\left(\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{18}+...+\dfrac{1}{58}-\dfrac{1}{60}\right)\)
\(=2\left(\dfrac{1}{12}-\dfrac{1}{60}\right)\)
\(=2\left(\dfrac{5}{60}-\dfrac{1}{60}\right)\)
\(=2\cdot\dfrac{1}{15}\)
\(=\dfrac{2}{15}\)
5\(\dfrac{8}{17}\):x + (-\(\dfrac{1}{17}\)) : x + 3\(\dfrac{1}{17}\) : 17\(\dfrac{1}{3}\)= \(\dfrac{4}{17}\)
\(\dfrac{93}{17}\).\(\dfrac{1}{x}\) + (-\(\dfrac{1}{17}\)) .\(\dfrac{1}{x}\) +\(\dfrac{3}{17}\)= \(\dfrac{4}{17}\)
\(\dfrac{1}{x}\).\(\dfrac{92}{17}\)=\(\dfrac{1}{17}\)
\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\)=\(\dfrac{6}{19}\)
Ta có:\(\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)...\left(1-\dfrac{2010}{2010}\right)\left(1-\dfrac{2011}{2010}\right)\)
=\(\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)....\)0\(\left(1-\dfrac{2011}{2010}\right)=0\)
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
1,A=\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+...+\(\dfrac{1}{99.100}\)
1,A= \(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-...-\(\dfrac{1}{99}\)+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\)
1,A= \(\dfrac{1}{2}\)-\(\dfrac{1}{100}\)
1,A= \(\dfrac{49}{100}\)
(Còn câu 2 mình chưa nghĩ ra. Cho mình hỏi 1 câu, không biết là đề câu 2 có chính xác không?)
đề này do cô giáo lớp mình cho mình cũng đc chữa câu 1 rồi còn câu 2 thì tiếp tục nghĩ
a: \(A=\left(\dfrac{-3}{4}+\dfrac{-2}{9}-\dfrac{1}{36}\right)+\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{3}{5}\right)+\dfrac{1}{57}\)
\(=\dfrac{-27-8-1}{36}+\dfrac{5+1+9}{15}+\dfrac{1}{57}\)
=1/57
b: \(B=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}-\dfrac{5}{7}-\dfrac{3}{35}\right)+\dfrac{1}{41}\)
\(=\dfrac{3+1+2}{6}+\dfrac{-7-25-3}{35}+\dfrac{1}{41}\)
=1/41
c: \(C=\left(\dfrac{-1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\dfrac{1}{107}\)
=1-1+1/107
=1/107
\(A=\dfrac{1995.1994-1}{1993.1995+1994}=\dfrac{1995\left(1993+1\right)-1}{1993.1995+1994}=\dfrac{1995.1993+1995-1}{1993.1995+1994}=\dfrac{1995.1993+1994}{1995.1993-1994}=1\)\(B=\dfrac{2004.2004+3006}{2005.2005-1003}=\dfrac{2004.2004+2004.1+1002}{2005.2005-1003}=\dfrac{2004.2005+1002}{2005.2005-1003}=\dfrac{2004.2005+1002}{2004.2005+2005-1003}=\dfrac{2004.2005+1002}{2004.2005+1002}=1\)\(C=\dfrac{2010.2011-1}{2009.2011+2010}=\dfrac{2009.2011+2011-1}{2009.2011+2010}=\dfrac{2019.2011+2010}{2009.20011+2010}=1\)\(D=\dfrac{2014.2015-1}{2013.2015+2013}=\dfrac{2013.2015+2014-1}{2013.2015+2013}=\dfrac{2013.2015+2013}{2013.2015+2013}=1\)
Câu 1 nhầm đề nha bạn mình sửa:
\(\dfrac{1995.1994-1}{1993.1995+1994}\)
\(=\dfrac{1995.\left(1993+1\right)-1}{1993.1995+1994}\)
\(=\dfrac{1995.1993+1995-1}{1993.1995+1994}\)
\(=\dfrac{1993.1995+1994}{1993.1995+1994}\)
\(=1\)
Câu 2: \(\dfrac{2004.2004+3006}{2005.2005-1003}\)
\(=\dfrac{2004.2004+2004+1002}{\left(2004+1\right).\left(2004+1\right)-1003}\)
\(=\dfrac{2004.2004+2004+1002}{2004.2004+2004+1-1003}\)
\(=\dfrac{2004.2004+2004+1002}{2004.2004+2004+1002}\)
\(=1\)
Câu 3:\(\dfrac{2010.2011-1}{2009.2011+2010}\)
\(=\dfrac{\left(2009+1\right).2011-1}{2009.2011+2010}\)
\(=\dfrac{2009.2011+2011-1}{2009.2011+2010}\)
\(=\dfrac{2009.2011+2010}{2009.2011+2010}\)
= 1
Câu 4:Nhầm để, sửa:
\(\dfrac{2014.2015-1}{2013.2015+2014}\)
\(=\dfrac{\left(2013+1\right).2015-1}{2013.2015+2014}\)
\(=\dfrac{2013.2015+2015-1}{2013.2015+2014}\)
\(=\dfrac{2013.2015+2014}{2013.2015+2014}\)
\(=1\)