Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét các trường hợp p nguyên tố:
* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)
* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)
* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)
+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2 + 2k + 3)\(⋮\)3 mà 3 (3k2 +2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)
+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2 + 6k + 4)\(⋮\)3 mà 3 (3k2 + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)
Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)
b) Xét các trường hợp p nguyên tố:
* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)
* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)
* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)
+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)
+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)
Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)
a+b+c=0<=>a^2+b^2+c^2+2ab+2bc+2ca=0
<=>a^2+b^2+b^c=-2ab-2bc-2ca
<=>(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2+8abc(a+b+c)
<=>(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2(vì a+b+c=0)(1)
(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2
<=>a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2
<=>a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2
<=>2(a^4+b^4+c^4)=4a^2b^2+4b^2c^2+4c^2a^2(2)
Từ (1) và (2)=>Đccm
a) ta có (x-y)2>=0 với mọi x,y
=>x2-2xy+y2>=0 với mọi x,y
=>x2+y2>=2xy với mọi x,y
=>(x2+y2)/xy>=2 với mọi x,y>0
=>x/y+y/x>=2 với mọi x,y>0
áp dụng bất đẳng thức trên ta có:
(a2+1)/1+1/(a2+1)>=2
=>a2+1+1/(a2+1)>=2
=>a2+1/(a2+1)>=1 (dpcm)
b)áp dụng bất đẳng thức x2+y2>=2xy (chứng minh trên) ta có:
a2+b2>=2ab
=>(a2+b2).c>=2abc (1)
b2+c2>=2bc
=>(b2+c2).a>=2abc (2)
a2+c2>=2ac
=>(a2+c2).b>=2abc (3)
từ (1),(2),(3) cộng vế với vế ta sẽ suy ra đc dpcm