Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
May ban oi cau hoi nay la rut gon xong roiu moi tinh nah
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
\(\Leftrightarrow x^2-5x+7-\frac{1}{2}>0\Leftrightarrow\left(x^2-\frac{2.5}{2}x+\frac{25}{4}\right)+\left(7-\frac{1}{2}-\frac{25}{4}\right)>0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2+\left(\frac{7.4-2-25}{4}\right)>0\)
<=> (x-5/2)^2+1/4>0
(x-5/2)^2>=0=> (x-5/2)^2+1/4>=1/4>0 => dpcm
\(\)
\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left[2\times\left(x+2\right)\right]^2=9\)
\(\left[\left(2x+1\right)-2\times\left(x+2\right)\right]\left[\left(2x+1\right)+2\times\left(x+2\right)\right]=9\)
\(\left(2x+1-2x-4\right)\left(2x+1+2x+4\right)=9\)
\(\left(-3\right)\left(4x+5\right)=9\)
\(4x+5=\frac{9}{-3}\)
\(4x+5=-3\)
\(4x=-3-5\)
\(4x=-8\)
\(x=-\frac{8}{4}\)
\(x=-2\)
***
\(3\left(x-1\right)^2-3x\left(x-5\right)=21\)
\(3\times\left[\left(x-1\right)^2-x\left(x-5\right)\right]=21\)
\(x^2-2x+1-x^2+5x=\frac{21}{3}\)
\(3x+1=7\)
\(3x=7-1\)
\(3x=6\)
\(x=\frac{6}{3}\)
\(x=2\)
***
\(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\left(x^2+2\times x\times3+3^2\right)-\left(x^2+8x-4x-32\right)=1\)
\(x^2+6x+9-x^2-8x+4x+32=1\)
\(2x=1-9-32\)
\(2x=-40\)
\(x=-\frac{40}{2}\)
\(x=-20\)
Ta có : (a + b)(a2 - ab + b2) - 2a(a - b)2
= (a + b).(a - b)2 - 2a(a - b)2
= (a - b)2(a + b - 2a)
VP \(=-\left(9x^2+42x+49\right)+6x+14-17\)
\(=-9x^2-42x-49+6x+14-17\)
\(=-9x^2-36x-52\)
\(=-\left[\left(3x\right)^2+2.3.6x+6^2+16\right]\)
\(=-\left[\left(3x+6\right)^2+16\right]\le-16,\forall x\)
Để giải thích nè:
1 ) \(\left(3x+6\right)^2\) : luôn là một số dương cho dù x có là dương hay âm đi nữa.
2 ) \(\left(3x+6\right)^2+16\) : một số dương mà cộng cho 16 thì luôn \(\ge16\) ( nếu \(\left(3x+6\right)^2=0\) thì \(\left(3x+6\right)^2+16=16\))
3 ) \(-\left[\left(3x+6\right)^2+16\right]\) : nếu thêm dấu trừ ( - ) vào một số dương >16 (lớn hơn 16) thì số đó sẽ < -16 (bé hơn -16)
Ví dụ: 100 là số dương lớn hơn , thêm dấu trừ: -100 < -16
nếu thêm dấu trừ ( - ) vào 16 thì sẽ bằng -16 : -16 = -16
VẬY KẾT LUẬN: \(-\left[\left(3x+6\right)^2+16\right]\) luôn luôn \(\le-16\) với mọi x