Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nha
Xét tg AEC và tg AEK có:
góc ACE= góc AEK ( = 90 độ )
AE : cạnh chung
góc A1 = góc A2 ( AE là phân giác )
=> tg AEC= tg AEK ( cạnh huyền - góc nhọn )
=> AC= AK ( 2 cạnh tương ứng )
b) Vì AC= AK ( theo a)
=> tg ACK cân tại A
Vì trong 1 tg cân đường phân giác đồng thời là đường trung tuyến nên Ả là đường trung trực của CK
c) Xét tg AEK và tg BEK có:
góc AKE= góc BKE ( = 90 độ )
KE : cạnh chung
góc KAE = góc KBE ( đồng vị )
=> tg AEK= tg BEK ( c-g-c)
=> KA= KB
a/ Tam giác ABE vuông tại A và tam giác BKE vuông tại K có
ABE=KBE(BE là p/g ABK)
BE là cạnh chung
Tam giác ABE=Tam giác BKE (ch-gn)
=>BA=BK hay tam giác ABK cân tại B nên đường phân giác BE đồng thòi là đường cao. Vậy BE vuông góc với AK.
b/Tam giác ABK cân tại B có B=60 độ nên là tam giác đều =>KB=KA=AB. Tương tụ ta có tam giác KBC cân tại K => KC=KA
Vậy KB=KC
c/EC>AB
Ta có EK là trung trực BC nên EB=EC, mà EB>AB do tam giác ABE vuông tại A nên EC>AB
d/ Gọi giao điểm AB và CD là N. Ta cần chứng minh N,E,K thẳng hàng để 3 đường thắng AB,EK,CD đi qua 1 điểm.
Thật vậy, tam giác AEN và tam giác KEC có
NAE=EKC (=90 độ)
EA=EK (c/mt)
EN=EC(tam giác BNC có phân giác BD đồng thời là đường cao nên đồng thời là trung trức CN)
Vậy tam giác AEN=tam giác KEC (ch-gn)
=> AEN=KEC
2 góc này ở vị trí đối đỉnh nên N,E,K thắng hàng. Vậy N,E,K thẳng hàng =>AB,EK,DC cùng đi qua 1 điểm
Bài 2:
a: Xét ΔABC có
AI là đường trung trực của BC
nên AB=AC
=>ΔABC cân tại A
mà AI là đường cao
nên AI là phân giác của góc BAC
b: Xét ΔDBC có
DI là đường cao
DI là đường trung tuyến
Do đó: ΔDBC cân tại D
Xét ΔBAD và ΔCAD có
AB=AC
AD chung
BD=CD
Do đó:ΔBAD=ΔCAD
a/ Xét tam giác AMC và tam giác DMB có:
Góc AMC=BMD(đối đỉnh)
BM=MC(trung tuyến AM)
AM=MD(gt)
=> Tam giác AMC=tam giác DMB(c-g-c)
b/ Vì tam giác AMC=tam giác DMB(câu a)
=>Góc BDM=CAM(góc tương ứng)
=> BD song song với AC.
Mà AC vuông góc với AB(tam giác ABC vuông tại A)
=> BD vuông góc với AB.
=> Góc ABD=90 độ.
c/ Xét tam giác ABD và tam giác BAC có:
Góc BAC=ABD=90 độ
BD= AC(cạnh tương ứng của tam giác AMC=tam giác DMB)
AB chung
=> Tam giác ABD=tam giác BAC( c-g-c)
c/ AM là trung tuyến tam giác ABC
=> AM<BC
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó:ΔOAD=ΔOCB
Suy ra: AD=BC
b: Xét ΔEAB và ΔECD có
\(\widehat{EAB}=\widehat{ECD}\)
AB=CD
\(\widehat{EBA}=\widehat{EDC}\)
Do đó:ΔEAB=ΔECD
c: Ta có: ΔEAB=ΔECD
nên EB=ED
Xét ΔOEB và ΔOED có
OE chung
EB=ED
OB=OD
Do đó:ΔOEB=ΔOED
SUy ra: \(\widehat{BOE}=\widehat{DOE}\)
hay OE là tia phân giác của góc BOD
d: Xét ΔOBD có OA/OB=OC/OD
nên AC//BD
a, do góc xBC = góc BCA
Mà 2 góc ở vị trí SLT
=> AC//Bx
b, Vì AC // Bx
=> góc A + góc ABx = 180 độ ( 2 góc trong cùng phía)
=> Góc A + 90 độ = 180 độ
=> Góc A = 180 độ - 90 độ = 90 độ
c, Ta có : góc ACD = góc CDx ( vì AC//Bx)
=> góc ACD = góc CDx = 120 độ
Vì góc BDC + CDx = 180 độ ( kề bù)
=> góc BDC + 120 độ = 180 độ
=> góc BDC = 180 độ - 120 độ = 60 độ
Bạn tự kẻ hình, trên này khó vẽ. Còn mấy cái chữ"góc, độ" do trên này mik ko tìm thấy nên phải viêt vậy!!