Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
b: 2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
=>y-25=32; z+9=50
=>y=57; z=41
d: 3/5x=2/3y
=>9x=10y
=>x/10=y/9=k
=>x=10k; y=9k
x^2-y^2=38
=>100k^2-81k^2=38
=>19k^2=38
=>k^2=2
TH1: k=căn 2
=>\(x=10\sqrt{2};y=9\sqrt{2}\)
TH2: k=-căn 2
=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)
e, Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\left(k\in Z\right)\)
\(\Leftrightarrow x=4k,y=5k\) (1)
Theo bài ra ta có: xy = 80
Từ (1) \(\Rightarrow4k.5k=80\Rightarrow20.k^2=80\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k^2=2^2\\k^2=\left(-2\right)^2\end{matrix}\right.\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
+ Với k = 2 \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)
+ Với k = -2 \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-10\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(8,10\right);\left(-8,-10\right)\right\}\)
a) \(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=\dfrac{-16}{4}=-4\Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}=-4\\\dfrac{y}{5}=-4\\\dfrac{z}{-2}=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-12\\y=-20\\z=8\end{matrix}\right.\)
1. Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\)
+\(\dfrac{x}{6}=\dfrac{27}{4}\Rightarrow x=\dfrac{27.6}{4}=\dfrac{81}{2}\)
+\(\dfrac{y}{5}=\dfrac{27}{4}\Rightarrow y=\dfrac{27.5}{4}=\dfrac{135}{4}\)
+\(\dfrac{z}{3}=\dfrac{27}{4}\Rightarrow z=\dfrac{27.3}{4}=\dfrac{81}{4}\)
Vậy \(x=\dfrac{81}{2};y=\dfrac{135}{4};z=\dfrac{81}{4}\)
2,Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{c}{4}=\dfrac{x+2y-3c}{2+2.3+3.4}=\dfrac{-20}{20}=-1\)
+\(\dfrac{x}{2}=-1\Rightarrow x=-1.2=-2\)
+\(\dfrac{y}{3}=-1\Rightarrow y=-1.3=-3\)
+\(\dfrac{c}{4}=-1\Rightarrow c=-1.4=-4\)
Vậy \(x=-2;y=-3;c=-4\)
b: Ta có: x/y=7/9
nên x/7=y/9
=>x/49=y/63
Ta có: y/z=7/3
nên y/7=z/3
=>y/63=z/27
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)
Do đó: x=-735/13; y=-945/13; z=-405/13
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)
Do đó: x=14; y=40; z=64
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)
Do đó: x=24; y=15; z=6
Bài 1:
a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)
=>2x-10=x+2
=>x=12
b: \(\Leftrightarrow\left(x+2\right)^2=100\)
=>x+2=10 hoặc x+2=-10
=>x=-12 hoặc x=8
c: \(\Leftrightarrow\left(2x-5\right)^3=27\)
=>2x-5=3
=>2x=8
=>x=4
a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)
Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)
\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)
\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)
Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)
a) Giải
Vì \(5x=2y=3z\)
\(\Rightarrow\dfrac{5x}{30}=\dfrac{2y}{30}=\dfrac{3z}{30}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{x+y-z}{6+15-10}=\dfrac{33}{11}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=3\Rightarrow x=18\\\dfrac{y}{15}=3\Rightarrow y=45\\\dfrac{z}{10}=3\Rightarrow z=30\end{matrix}\right.\)
Vậy \(x=18,\) \(y=45\) hoặc \(z=30.\)
c) Giải
(Vì mk bt bạn bấm nhầm nên đề bị sai, mk sửa 7 \(\rightarrow\) y do trên bàn phím, 7 với y ở vị trí gần nhau mà 2 với y ở cách xa nhau nên sửa như vậy nhé)
Vì \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
\(\Rightarrow\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{4-6+12}=\dfrac{x-1-2y+4+3z-9}{10}\)
\(=\dfrac{\left(x-2y+3z\right)-\left(1-4+9\right)}{10}=\dfrac{14-6}{10}=\dfrac{4}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{4}{5}\Rightarrow x=\dfrac{13}{5}\\\dfrac{y-2}{3}=\dfrac{4}{5}\Rightarrow y=\dfrac{22}{5}\\\dfrac{z-3}{4}=\dfrac{4}{5}\Rightarrow z=\dfrac{31}{5}\end{matrix}\right.\)
Vậy \(x=\dfrac{13}{5},\) \(y=\dfrac{22}{5}\) và \(z=\dfrac{31}{5}.\)
c) Giải
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Mà \(x^2+2y^2-z^2=-12\)
\(\Rightarrow\left(2k\right)^2+2\left(3k\right)^2-\left(5k\right)^2=-12\)
\(\Rightarrow4.k^2+18.k^2-25.k^2=-12\)
\(\Rightarrow\left(-3\right)k^2=-12\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(\circledast k=-2\Rightarrow\left\{{}\begin{matrix}x=-4\\y=-6\\z=-10\end{matrix}\right.\)
\(\circledast k=2\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=10\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-4;y=-6;z=-10\\x=4;y=6;z=10\end{matrix}\right..\)
a) Ta có :\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)\(=\dfrac{5x+2y+z}{555+444+333}=\dfrac{1100}{1332}=\dfrac{275}{333}\)
Từ đó tìm được x;y;z
b) Từ \(\dfrac{x}{2}=\dfrac{y}{3}\) \(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}\)
Đặt \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4k\\y^2=9k\end{matrix}\right.\)
\(\Rightarrow x^2\cdot y^2=4k\cdot9k=52\)
\(\Rightarrow36k^2=52\)
\(\Rightarrow k^2=\dfrac{13}{9}\) (sai đề)
b: Sửa đề: x^2+y^2=52
Đặt x/2=y/3=k
=>x=2k; y=3k
x^2+y^2=52
=>4k^2+9k^2=52
=>k^2=4
TH1: k=2
=>x=4; y=6
TH2: k=-2
=>x=-4; y=-6
c: Đặt x/5=y/3=k
=>x=5k; y=3k
x^2-y^2=16
=>25k^2-9k^2=16
=>k^2=1
TH1: k=1
=>x=5; y=3
TH2: k=-1
=>x=-5; y=-3
d: Đặt x/2=y/3=k
=>x=2k; y=3k
Ta có: xy=54
=>2k*3k=54
=>6k^2=54
=>k^2=9
TH1: k=3
=>x=6; y=9
TH2: k=-3
=>x=-6; y=-9
e: Đặt x/4=y/3=k
=>x=4k; y=3k
Ta có: xy=12
=>4k*3k=12
=>k^2=1
TH1: k=1
=>x=4; y=3
TH2: k=-1
=>x=-4; y=-3