Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
khoản cách là 3 đơn vị
khoảng cách là 3 đơn vị
khoảng cách là 4 đơn vị
mấy cái này chứng minh mần j nhỉ
cái này là vốn có để chưngs minh rồi
nếu chứng mnh thì cũng bằng thừa
a, Gọi 2 số tự nhiên liến tiếp là : a;a+1 (a thuộc N)
1 số khi chia cho 2 có dạng : 2k;2k+1 (k thuộc N)
+) Nếu a=2k => a chia hết cho 2 (1)
+) Nếu a=2k+1 => a+1=2k+2 chia hết cho 2 (2)
Từ (1) và (2)
=> Trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2.
Vậy trong 2 số tự nhiên liên tiếp, có 1 số chia hết cho 2.
b, Tương tự phần a
mk làm câu 1:
Ta cso công thức:..9^2n(với n là số nguyên) có tận cùng =1
Ta có:2009^2n+14
=...1+14=...5 chia hết cho 5
a) C= { 0; 2; 4; 6; 8 }
b) L= { 11;13;15;17;19}
c) A= { 18;20;22}
d) B={ 25;27;29;31}
tk mk nha
Đặt tích 3 số tự nhiên liên tiếp là a * (a + 1) * (a + 2)
+Nếu a = 2k thì:
a * (a + 1) * (a + 2) chia hết cho 2
+ Nếu a = 2k +1 thì:
a+1=2k+1+1=2k+2 chia hết cho 2
Suy ra a * (a + 1) * (a + 2) chia hết cho 2
+ Nếu a = 3k thì
a * (a + 1) * (a + 2) chia hết cho 3
+ Nếu a = 3k +1 thì
a+2=3k+1+2=3k+3 chia hết cho 3
Suy ra a * (a + 1) * (a + 2) chia hết cho 3
+ Nếu a = 3k+2 thì:
a+1=3k+2+1=3k+3 chia hết cho 3
Suy ra a * (a + 1) * (a + 2) chia hết cho 3
Vì 2 và 3 nguyên tố cùng nhau nên a * (a + 1) * (a + 2) chia hết cho 2.3=6 (đpcm)
Bài 1
6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp
Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn
Bài 2
5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha
1.Bạn kham khảo tại link này nhé.
Câu hỏi của Nguyễn Thị Thu Trang - Toán lớp 6 - Học toán với OnlineMath