\(\left(x+\sqrt{x^2+1}\right).\left(y+\sqrt{y^2+1}\right)=1\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

\(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)

\(\Rightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)(1)

Tương tự \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)(2)

Lấy (1) + (2) đc x + y = -x - y

                      <=> 2(x + y) = 0 

                      <=> x + y = 0

22 tháng 10 2017

ta có: xy+yz+zx=1

=> \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)

c/m tương tự ta đc: \(1+y^2=\left(x+y\right)\left(y+z\right)\)

                                \(1+z^2=\left(y+z\right)\left(z+x\right)\)

thay vào A ta đc:

\(A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+z\right)\left(x+y\right)}}+y\sqrt{\frac{\left(y+z\right)\left(z+x\right)\left(x+z\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(x+z\right)}}\)\(\Rightarrow A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(\Rightarrow A=2\left(xy+yz+zx\right)\)

\(\Rightarrow A=2\) vì xy+yz+zx=1

\(\Leftrightarrow\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

Ta có bảng : 

\(x+\sqrt{1+x^2}\)1-1
\(y+\sqrt{1+y^2}\)1-1
x0vô nghiệm 
y0vô nghiệm 

lỗi @@ đọc nhầm trên tưởng giải PT chưa có nhin  xuống \(\left(x+y\right)^2\)

Làm lại nhớ _-_  sai chịu, làm cái này kham khảo hơi nhìu, chill :v 

\(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)

Ta có : \(\hept{\begin{cases}\left(x+\sqrt{1+x^2}\right)\left(\sqrt{x^2+1}-x\right)=1\\\left(y+\sqrt{y^2+1}\right)\left(\sqrt{y^2+1}-y\right)=1\end{cases}}\)

Kết hợp giả thiết \(x+\sqrt{1+x^2}=y+\sqrt{y^2+1}\)và 

\(\left(\sqrt{x^2+1}-x\right)=\left(\sqrt{y^2+1}-y\right)\)

Ta  có :  \(\hept{\begin{cases}\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\\\sqrt{y^2+2013}-y=x+\sqrt{x^2+1}\end{cases}}\)

Cộng theo vế ta có : \(-x-y=x+y\Leftrightarrow\left(x+y\right)^2=0\)

13 tháng 10 2019

I am grade 5

16 tháng 9 2019

Khai  triển nó ra,ta có:

\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)

\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)

\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)

Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(\Sigma x\cdot\left(y+z\right)\)

Rút gọn dc như vậy rồi chị làm nốt ạ

25 tháng 7 2016

hiểu chưa 

25 tháng 7 2016

hieu chet lien

22 tháng 6 2016

nhận liên hợp ta có  \(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)

mà theo đề bài ta có \(\left(\sqrt{x^2+1}+x\right)\left(y+\sqrt{y^2+1}\right)=1\)

==> \(\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\)

tương tự ta có \(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\)

trừ từng vế 2 pt trên ta có 2x=-2y <=>x=-y

đến đây ok rùi nhé bạn