Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: xy+yz+zx=1
=> \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)
c/m tương tự ta đc: \(1+y^2=\left(x+y\right)\left(y+z\right)\)
\(1+z^2=\left(y+z\right)\left(z+x\right)\)
thay vào A ta đc:
\(A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+z\right)\left(x+y\right)}}+y\sqrt{\frac{\left(y+z\right)\left(z+x\right)\left(x+z\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(x+z\right)}}\)\(\Rightarrow A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(\Rightarrow A=2\left(xy+yz+zx\right)\)
\(\Rightarrow A=2\) vì xy+yz+zx=1
\(\Leftrightarrow\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng :
\(x+\sqrt{1+x^2}\) | 1 | -1 |
\(y+\sqrt{1+y^2}\) | 1 | -1 |
x | 0 | vô nghiệm |
y | 0 | vô nghiệm |
lỗi @@ đọc nhầm trên tưởng giải PT chưa có nhin xuống \(\left(x+y\right)^2\)
Làm lại nhớ _-_ sai chịu, làm cái này kham khảo hơi nhìu, chill :v
\(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Ta có : \(\hept{\begin{cases}\left(x+\sqrt{1+x^2}\right)\left(\sqrt{x^2+1}-x\right)=1\\\left(y+\sqrt{y^2+1}\right)\left(\sqrt{y^2+1}-y\right)=1\end{cases}}\)
Kết hợp giả thiết \(x+\sqrt{1+x^2}=y+\sqrt{y^2+1}\)và
\(\left(\sqrt{x^2+1}-x\right)=\left(\sqrt{y^2+1}-y\right)\)
Ta có : \(\hept{\begin{cases}\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\\\sqrt{y^2+2013}-y=x+\sqrt{x^2+1}\end{cases}}\)
Cộng theo vế ta có : \(-x-y=x+y\Leftrightarrow\left(x+y\right)^2=0\)
Khai triển nó ra,ta có:
\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)
Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(\Sigma x\cdot\left(y+z\right)\)
Rút gọn dc như vậy rồi chị làm nốt ạ
nhận liên hợp ta có \(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)
mà theo đề bài ta có \(\left(\sqrt{x^2+1}+x\right)\left(y+\sqrt{y^2+1}\right)=1\)
==> \(\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\)
tương tự ta có \(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\)
trừ từng vế 2 pt trên ta có 2x=-2y <=>x=-y
đến đây ok rùi nhé bạn
\(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)
\(\Rightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)(1)
Tương tự \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)(2)
Lấy (1) + (2) đc x + y = -x - y
<=> 2(x + y) = 0
<=> x + y = 0