Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để chia đám đất thành hình vuông bằng nhau, mà đảm bảo cạnh hình vuông lớn nhất, thì độ dài cạnh hình vuông đó phải là ước chung của $52,36$
Ta có:
$52=2^2.13$
$36=2^2.3^2$
$\Rightarrow$ độ dài cạnh hình vuông lớn nhất là: $2^2=4$ (m)
Câu hỏi của Nguyễn Phương Thảo 2008 - Toán lớp 6 - Học toán với OnlineMath
Lời giải:
Giả sử người ta chia mảnh đất thành hình vuông có cạnh $n$ (m).
$n$ chia hết cho $90,150$ nên $n$ là ƯC$(90,150)$
Để cạnh hình vuông lớn nhất thì $n$ là ƯCLN$(90,150)$
$\Rightarrow n=30$ (m)
Độ dài lớn nhất của cạnh hình vuông là ƯCLN(52; 36)
Ta có:
\(52=2^2.13\)
\(36=2^2.3^2\)
ƯCLN(52; 36) = 22 = 4
Vậy độ dài lớn nhất của cạnh hình vuông là 4 m
Gọi a là độ dài lớn nhất của cạnh hình vuông ( a\(\inℕ^∗\), m )
Người ta muốn chia đám đất thành những khoảng hình vuông bằng nhau nên suy ra:
52 \(⋮\)a và 36\(⋮\)a
=> a \(\in\)Ư( 52; 36 )
Mà a lớn nhất
=> a = UCLN ( 52; 36)
Có: 52 = 2\(^2\).13 và 36 = 2\(^2\).3\(^2\)
=> a = 2\(^2\)=4 ( thỏa mãn)
Vậy độ dài lớn nhất của cạnh hình vuông là 4 m.
ghrfgfdgdfg
retgdrgdfgdfgreytrf