Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/ x - 2 / = / 2x + 3 /
\(=>x-2=2x+3\)
\(=>-x=5\)
\(=>x=-5\)
|x+2|=|2x-3|
x+2=2x-3
x-2x=-3-2
-3x=-5
x=(-5):(-3)
x=\(\frac{5}{3}\)
a)I2x-6I+3=7
->I2x-6I =7-3
->I2x-6I =4
->I2x-6I thuộc 4 hoặc -4
->Nếu 2x-6=4->x=5
->Nếu 2x-6=-4->x=1
Vậy x thuộc tập hợp 5 hoặc 1
b)I2x-5I=3
->I2x-5I thuộc 3 hoặc -3
->Nếu 2x-5=3->x=4
->Nếu 2x-5=--3->x=1
Vậy x thuộc tập hợp 4 hoặc 1
c)Ix+5I+9=4
->Ix+5I =4-9
->Ix+5I =-5
mà giá trị tuyệt đối của một số nguyên luôn là 1 số tự nhiên
Vậy không có giá trị của x
11: |2x-3|-1/3=0
=>|2x-3|=1/3
=>\(\left[{}\begin{matrix}2x-3=\dfrac{1}{3}\\2x-3=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{10}{3}\\2x=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
12: \(\dfrac{5}{6}-\left|x+\dfrac{1}{4}\right|=\dfrac{1}{4}\)
=>\(\left|x+\dfrac{1}{4}\right|=\dfrac{5}{6}-\dfrac{1}{4}=\dfrac{10}{12}-\dfrac{3}{12}=\dfrac{7}{12}\)
=>\(\left[{}\begin{matrix}x+\dfrac{1}{4}=\dfrac{7}{12}\\x+\dfrac{1}{4}=-\dfrac{7}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{11}{12}\end{matrix}\right.\)
13: \(\left|x-1\right|-2x=\dfrac{1}{2}\)
=>\(\left|x-1\right|=2x+\dfrac{1}{2}\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(2x+\dfrac{1}{2}\right)^2=\left(x-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(2x+\dfrac{1}{2}-x+1\right)\left(2x+\dfrac{1}{2}+x-1\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(x+\dfrac{3}{2}\right)\left(3x-\dfrac{1}{2}\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{6}\)
14: \(3x-\left|x+15\right|=\dfrac{5}{4}\)
=>\(\left|x+15\right|=3x-\dfrac{5}{4}\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{5}{12}\\\left(3x-\dfrac{5}{4}\right)^2=\left(x+15\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{5}{12}\\\left(3x-\dfrac{5}{4}-x-15\right)\left(3x-\dfrac{5}{4}+x+15\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{5}{12}\\\left(2x-16.25\right)\left(4x+\dfrac{55}{4}\right)=0\end{matrix}\right.\)
=>\(x=8.125\)
|x - 5| = |2x - 9|
=> x - 5 = 2x - 9 => x = 4
hoặc x - 5 = 9 - 2x => 3x = 14 => x = 14/3
Vậy x = 4 , x = 14/3
| x - 5 | = | 2x - 9 |
TH1: x = 2x - 4
x = x + x - 4
x - 4 = 0
x = 4 + 0
x = 4
b) |2x - 6| + |x + 2| = 8
1)Với \(x< -2\) ta được: -(2x - 6) + [-(x + 2)] = 8 => -2x + 6 - x - 2 = 8 => -3x = 8 + 2 -6 = 4 => x = \(\frac{-4}{3}\)(loại vì \(\frac{-4}{3}>-2\))
2)Với \(-2\le x< 3\)ta được: (2x - 6) + [-(x + 2)] => 2x - 6 - x - 2 = 8 => x = 8 + 6 +2 => x = 16 (loại vì 16 > 3)
3)Với \(x\ge3\) ta được: (2x - 6) + (x + 2) = 8 => 2x - 6 + x + 2 = 8 => 3x = 8 + 6 - 2 = 12 => x = 4(chọn)
Vậy x = 4
c) |2x - 1| + |2x - 5| = 4
1)Với \(x\le0,5\)ta được: -(2x - 1) + [-(2x - 5)] = 4 => -2x + 1 - 2x + 5 = 4 => -4x = 4 - 1 - 5 => -4x = -2 => x = \(0,5\)(loại)
2)Với \(0,5< x< 2,5\) ta được: 2x - 1 + [-(2x - 5)] = 4 => 2x -1 - 2x + 5 = 4 => 0x = 4 +1 -5 => 0x = 0 => x\(\in R\)
3)Với \(x\ge2,5\)ta được: 2x - 1 + 2x - 5 = 4 => 4x = 4 + 1 + 5 => 4x = 10 => x = \(2,5\) (chọn)
Vậy x = 0,5 hoặc x = 2,5
d) |x + 5| + |x + 3| = 9
1)Với \(x< -5\)ta được: -(x + 5) + [-(x + 3)] = 9 => -x - 5 - x - 3 = 9 => -2x = 9 + 5 + 3 => -2x = 17 => x = -8,5(chọn)
2)Với \(-5\le x< -3\) ta được: x + 5 + [-(x + 3)] = 9 => x + 5 -x - 3 = 9 => 0x = 9 - 5 + 3 => 0x = 7(vô lý)
3)Với \(x\le-3\)ta được: x + 5 + x + 3 = 9 => 2x = 9 - 5 - 3 => 2x = 1 => x = 0,5(chọn)
Vậy x = -8,5 hoặc x = 0,5
a) 7x - |2x - 4| = 3x + 12 => 7x - (2x - 4) = 3x + 12 khi (2x + 4)\(\ge\)0 => x\(\ge\)-0,5 hoặc 7x - [-(2x - 4)] = 3x + 12 khi (2x + 4) < 0 => x < -0,5
1)Với x \(\ge\)-0,5 thì 7x - (2x - 4) = 3x +12 => 7x - 2x + 4 = 3x + 12 => 7x -2x -3x = -4 +12 => 2x = 8 => x = 4(chọn vì 4 > -0,5)
2)Với x < -0,5 thì 7x - [-(2x - 4)] = 3x +12 => 7x + 2x - 4 = 3x + 12 => 7x +2x - 3x = 4 + 12 => 6x = 16 => x = \(\frac{8}{3}\)(loại vì \(\frac{8}{3}\)> -0,5 )
Vậy x = 4