\(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2015

Phương trình trở thành 

\(\sqrt{x^2+x+1}=2-\sqrt{x^2-x+1}\Rightarrow x^2+x+1=4-4\sqrt{x^2-x+1}+x^2-x+1\)

\(2\sqrt{x^2-x+1}=2-x\to x\le2\&4\left(x^2-x+1\right)=4-4x+x^2\to3x^2=0\to x=0.\)

Thử lại \(x=0\) thỏa mãn.

 

4 tháng 9 2015

mk làm theo cách bình phương 2 vế

25 tháng 8 2019

a.\(DK:\frac{2}{3}\le x< 4\)

b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\) 

c.\(DK:x\le-3\)

25 tháng 8 2019

Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn

29 tháng 7 2015

sửa theo cách thứ nhất bạn!!

17 tháng 8 2017

các biểu thức trong căn pt hết về HĐT rồi phá ra là done

12 tháng 7 2018

1) \(\sqrt{3-x}=3x-5\)

\(\Leftrightarrow\left(\sqrt{3-x}\right)^2=\left(3x-5\right)^2\)

\(\Leftrightarrow3-x=9^2-30x+25\)

\(\Rightarrow x=\frac{11}{9};x=2\)

2) \(x-\sqrt{4x-3}\)

\(\Leftrightarrow x-\sqrt{4x-3}-x=2x-x\)

\(\Leftrightarrow-\sqrt{4-x}=2-x\)

\(\Leftrightarrow\left(-\sqrt{4x-3}\right)^2=\left(2-x\right)^2\)

\(\Leftrightarrow4x-3=4-4x+x^2\)

\(\Rightarrow x=1;x=7\)

4) \(\sqrt{x+1}=x-1\)

\(\Leftrightarrow\left(\sqrt{x+1}\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow x+1=x^2-2x+1\)

\(\Leftrightarrow x=3;x=0\)

\(\Rightarrow x=3;x=0\)

5) \(\sqrt{x^2-1}=x+1\)

\(\Leftrightarrow\left(\sqrt{x^2-1}\right)^2=\left(x+1\right)^2\)

\(\Leftrightarrow x^2-1=x^2+2x+1\)

\(\Rightarrow x=-1\)

6) \(\sqrt{x^2-4x+3}=x-2\)

\(\Leftrightarrow\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+3=x^2-4x+4\)

\(\Leftrightarrow x=3;x=4\)

\(\Rightarrow x=3;x=4\)

7) \(\sqrt{x^2-1}=x-1\)

\(\Leftrightarrow\left(\sqrt{x^2-1}\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-1=x^2-2x+1\)

\(\Rightarrow x=1\)

8) \(x-2\sqrt{x-1}=16\)

\(\Leftrightarrow x-2\sqrt{x-1}-x=16-x\)

\(\Leftrightarrow-2\sqrt{x-1}=16-x\)

\(\Leftrightarrow\left(-2\sqrt{x-1}\right)^2=\left(16-x\right)^2\)

\(\Leftrightarrow4x-4=256-32x+x^2\)

\(\Leftrightarrow x=26;x=10\)

\(\Rightarrow x=26;x=10\)

9) \(\sqrt{5-x^2}=x-1\)

\(\Leftrightarrow\left(\sqrt{5-x^2}\right)^2=\left(x+1\right)^2\)

\(\Leftrightarrow5-x^2=x^2-2x+1\)

\(\Leftrightarrow x=2;x=-1\)

\(\Rightarrow x=2;x=-1\)

10) \(x-\sqrt{4x-3}=2\)

\(\Leftrightarrow x-\sqrt{4x-3}-x=2-x\)

\(\Leftrightarrow-\sqrt{4x-3}=2-x\)

\(\Leftrightarrow\left(-\sqrt{4x-3}\right)^2=\left(2-x\right)^2\)

\(\Leftrightarrow4x-3=4-4x+x^2\)

\(\Leftrightarrow x=7;x=1\)

\(\Rightarrow x=1;x=7\)

Mk ko chắc

8 tháng 8 2018

Bài 1:

a, (Xin được sửa đề bài) \(C=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)

\(=\sqrt{x-3-2\sqrt{x-3}+1}-\sqrt{x-3-4\sqrt{x-3}+4}\)

\(=\sqrt{\left(\sqrt{x-3}-1\right)^2}-\sqrt{\left(\sqrt{x-3}-2\right)^2}\)

\(=\sqrt{x-3}-1-\sqrt{x-3}+2=1\)

b, \(D=\sqrt{m^2}-\sqrt{m^2-10m+25}\)

\(=m-\sqrt{\left(m-5\right)^2}\)

\(=m-m+5=5\)

Bài 2:

a, \(VT=\sqrt{x+2\sqrt{x-2}-1}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{x-2+2\sqrt{x-2}+1}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{\left(\sqrt{x-2}+1\right)^2}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\left(\sqrt{x-2}-1\right)\left(\sqrt{x-2}+1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\left(x-3\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{x}+\sqrt{3}=VP\)

b, \(VT=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a+1-2\sqrt{a}}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\left(\frac{\sqrt{a}-1+\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)^2}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}=VP\)

15 tháng 8 2017

Bài 2:Áp dụng BĐT AM-GM ta có:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)

\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)

\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)

CỘng theo vế 3 BĐT trên có: 

\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)

Khi x=y=z

15 tháng 8 2017

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(..........................\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng theo vế ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)