Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a do AB = AC nên tam giác ABC cân ở A nên góc ACB = ABC
câu b do EAB + BAC = DAC + BAC ( = 90 độ )
nên CAD = BAE mà ACB = ABC chứng minh trên nên ACD = ABE
mà AC = AB nên tam giác ACD = tam giác ABE ( g - c - g )
=> BD =CE 2 cạnh tương ứng
a/ Xét \(\Delta ABD,\Delta ACD\)có:
\(AD\)(chung)
\(\widehat{BAD}=\widehat{CAD}\)
\(AB=AC\)
\(\Rightarrow\Delta ABD=\Delta ACD\)
\(\Rightarrow DB=DC\)
b/ Theo câu a thì ta có: \(\Rightarrow\Delta ABD=\Delta ACD\)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AD\perp BC\)
c/ Gọi M, N là giao điểm của AE với BF và BC
Xét \(\Delta BCF,\Delta ECA\) có
\(CE=CB\)
\(\widehat{ECA}=\widehat{BCF}=90^o+\widehat{BCA}\)
\(CA=CF\)
\(\Rightarrow\Delta BCF=\Delta ECA\)
\(\Rightarrow\widehat{FBC}=\widehat{AEC}\)
Mà \(\widehat{BNM}=\widehat{ENC}\)
\(\Rightarrow\widehat{BMN}=\widehat{ECN}=90^o\)
\(\Rightarrow EA\perp FB\)
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
a) Vì tam giác ABC có AB=AC
=> ∆ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
b) Ta có: \(\left\{{}\begin{matrix}\widehat{ABE}+\widehat{ABC}=180^o\\\widehat{ACD}+\widehat{ACD}=180^o\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Lại có: \(\widehat{EAB}+\widehat{BAC}=90^o\)
\(\widehat{DAC}+\widehat{CAB}=90^o\)
=> \(\widehat{EAB}=\widehat{DAC}\)
Xét ∆EAB và ∆DAC:
AB=AC(gt)
\(\widehat{EAB}=\widehat{DAC}\left(cmt\right)\)
\(\widehat{ABE}=\widehat{ACD}\left(cmt\right)\)
=> ∆EAB=∆DAC(g.c.g)
=> EB=CD(2 cạnh t/ứ)
=> EB+BC=DC+BC
=> EC=BD
=> Đpcm
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)