Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 3 giờ 30 phút = 3,5 giờ
Cứ 1 giờ hai vòi chảy được: 1: 3,5 = \(\dfrac{2}{7}\)(bể)
2 giờ hai vòi cùng chảy được: \(\dfrac{2}{7}\) \(\times\) 2 = \(\dfrac{4}{7}\) (bể)
Trong 1 giờ vòi 1 chảy được: \(\dfrac{4}{5}\) - \(\dfrac{4}{7}\) = \(\dfrac{8}{35}\) (bể)
Vòi 1 chảy đầy bể sau: 1 : \(\dfrac{8}{35}\) = \(\dfrac{35}{8}\) (giờ)
Vòi 2 chảy một mình trong 1 giờ được: \(\dfrac{2}{7}\) - \(\dfrac{8}{35}\) = \(\dfrac{2}{35}\)(bể)
Vòi 2 chảy đầy bể sau: 1 : \(\dfrac{2}{35}\) = \(\dfrac{35}{2}\) (giờ)
Kết luận:.....
Gọi x (h), y(h) lần lượt là thời gian chảy một mình đầy bể của vòi thứ nhất và vòi thứ hai (x, y > 0)
3h 30 phút = 3,5 h
Cả hai vòi cùng chảy trong 1 giờ:
1/x + 1/y = 1/3,5 (1)
Vòi thứ nhất chảy 3h, vòi thứ hai chảy 2h được 4/5 bể nên:
3/x + 2/y = 4/5 (2)
Đặt u = 1/x; v = 1/y
(1) ⇔ u + v = 2/7
⇔ u = 2/7 - v
(2) ⇔ 3u + 2v = 4/5 (3)
Thế u = 2/7 - v vào (3) ta có:
(3) ⇔ 3.(2/7 - v) + 2v = 4/5
⇔ 6/7 - 3v + 2v = 4/5
⇔ -v = 4/5 - 6/7
⇔ -v = -2/35
⇔ v = 2/35
Thế v = 2/35 vào u = 2/7 - v, ta được:
u = 2/7 - 2/35
⇔ u = 8/35
*) Với u = 8/35
⇔ 1/x = 8/35
⇔ x = 35/8 (nhận)
*) Với v = 2/35
⇔ 1/y = 2/35
⇔ y = 35/2 (nhận)
Vậy vòi thứ nhất chảy một mình trong 35/8 h thì đầy bể
Vòi thứ hai chảy một mình trong 35/2 h thì đầy bể
gọi thời gian mỗi vòi chảy 1 mk đầy bể lần lượt là x,y (h) (x , y >0 )
2 h vòi 1 chảy đc là 2x ( bể)
2 h vòi 2 chảy đc là 2y (bể)
2 h cả 2 vòi chảy đc là 2x + 2y = 3/5 (bể) (1)
3h vòi 1 chảy đc là 3x (bể)
vậy nếu vòi 1 chảy 3h , vòi 2 chảy 2h thì đc 4/5 bể
\(\Rightarrow\)pt 3x + 2y = 4/5 (2)
từ 1 và 2 ta đc hpt \(\hept{\begin{cases}2x+2y=\frac{3}{5}\\3x+2y=\frac{4}{5}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=\frac{1}{10}\end{cases}}\)(tm)
vậy ..................
ko bt đúng ko nữa
#mã mã#
Gọi thời vòi 1 vòi 2 chảy đầy bể lần lượt là a ; b ( a ; b > 0 )
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{6}\\\dfrac{2}{a}+\dfrac{3}{b}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{10}\\\dfrac{1}{b}=\dfrac{1}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=10\\b=15\end{matrix}\right.\left(tm\right)\)
Gọi thời gian vòi thứ nhất chảy một mình đầy bể là x ( giờ, x > 6)
thời gian voi thứ hai chảy một mình đầy bể là y ( giờ, y > 6)
Suy ra một giờ vòi thứ nhất chảy được \(\frac{1}{x}\)(bể)
một giờ vòi thứ hai chảy được \(\frac{1}{y}\)(bể)
*)Cả hai vòi cùng chảy vào một bể không có nước thì sau 6 giờ bể đầy
=> Một giờ cả hai vòi chày được \(\frac{1}{6}\)(bể)
Do đó ta có phương trình: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\)(1)
*)Vòi thứ nhất chảy trong 2 giờ được: \(\frac{2}{x}\)(bể)
Vòi thứ hai chảy trong 3 giờ được: \(\frac{3}{y}\)(bể)
Khi đó hai vòi chày được 1/2 bể nên ta có: \(\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\)(2)
Từ (1) và (2) ta có hệ phương trình:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\\\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{2}{x}+\frac{2}{y}=\frac{1}{3}\\\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\end{cases}}\)
=> \(\frac{1}{y}=\frac{1}{6}\)(sai đề rồi nhé)
Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là x và y (h) (ĐK: x, y>0�, �>0).
Mỗi giờ vòi 1 chảy được 1x1� bể và vòi 2 chảy được 1y1� bể.
Cả 2 vòi cùng chảy trong 6 giờ thì đầy bể nên mỗi giờ cả hai vòi cùng chảy được 1616 bể, ta có phương trình 1x+1y=16(1)1�+1�=16(1)
Trong 2 giờ vòi 1 chảy được 2x2� bể, trong 3 giờ vòi 2 chảy được 3y3� bể.
Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại va mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2525 bể nên ta có phương trình 2x+3y=25(2)2�+3�=25(2)
Từ (1)(1) và (2)(2) ta có hệ
{1x+1y=162x+3y=25⇔{2x+2y=132x+3y=25⇔{1y=1151x=110⇔{x=10y=15(tm){1�+1�=162�+3�=25⇔{2�+2�=132�+3�=25⇔{1�=1151�=110⇔{�=10�=15(��)
Vậy thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là 10 giờ và 15 giờ.
Chọn D