K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

hình, bn tự vẽ nhé!

Giải:

a/ Xét t/g ADE và t/g CFE có:

AE = CE (gt)

\(\widehat{AED}=\widehat{CEF}\) (ddoois ddinhr)

DE = FE (gt)

=> t/g ADE = t/g CFE (c.g.c)

=> AD = CF

mà DB = AD (gt)

=> DB = CF (đpcm)

b/ Ta có: t/g ADE = t/g CFE (ý a)

=> \(\widehat{DAE}=\widehat{FCE}\) (2 góc tương ứng)

mà 2 góc này so le trong

=> AB // CF

=> \(\widehat{BDC}=\widehat{FCD}\) (so le trong)

\(\widehat{BCD}=\widehat{FDC}\) (so le trong)

Xét t/g BDC và t/g FCD có:

\(\widehat{BDC}=\widehat{FCD}\left(cmt\right)\)

CD : cạnh chung

\(\widehat{BCD}=\widehat{FDC}\left(cmt\right)\)

=> t/g BDC = t/g FCD (g.c.g)(đpcm)

c/ Ta có: \(\widehat{BCD}=\widehat{FDC}\) (đã cm)

mà 2 góc này ở vị trí so le trong

=> DE // BC (đpcm)

Vì t/g BDC = t/g FCD (ý b)

=> BC = FD

mà DE = EF = \(\frac{1}{2}\) FD

=> DE = EF = \(\frac{1}{2}BC\)

=> DE = \(\frac{1}{2}BC\left(đpcm\right)\)

5 tháng 1 2017

Bạn vào trang web /hoi-dap/question/158621.html

15 tháng 1 2019

em xét tam giác DEA và tam giác FEC 

2 tam giác đó bằng nhau

suy ra AD=CF

mà AD=DB 

suy ra CF=BD

4 tháng 3 2018

Xet ∆AED=∆CEF ( c-g-c )

=) AD=CF

Mà AD=DB

Suy ra DB=CF

b+c)

Ta có D là tđ AB

           F là tđ AC

Suy ra * DE//BC

=) FDC = DCB ( slt )

            * DE = 1/2BC =) BC = DF

Xét∆BDC=∆FCD ( c-g-c)

3 tháng 4 2020

Cho tam giác abc có gốc a bằng 90° trên bc lấy e sao cho BE = BA tia ph . Giác của góc b cắt ac ở d 

a chứng minh tam giác ABD = EBD 

b tính số đo BEM

c Chứng minh BD vuông góc với AE

23 tháng 3 2018

a) xét tam giác ADE và tam giác FEC, ta có:

    +) AE = EC (E là trung điểm của AC)

    +) DE = EF (E là trung điểm của DF)

\(\widehat{ADE}=\widehat{CEF}\)(hai góc đối đỉnh)

=> \(\Delta ADE=\Delta FEC\) (c = g = c)

=> AD = CF (2 cạnh tương ứng)

mà AD = DB (D là trung điểm của AB)

nên: CF = BD

b) ta có: 

\(\widehat{EAD}=\widehat{ECF}\left(\Delta ADE=\Delta FEC\right)\)

mà góc EAD và góc ECF nằm so le

nên AD//CF hay AB//CF 

xét tam giác BDC và tam giác DCF, ta có:

BD = CF (Cm a)

DC = DC

\(\widehat{BDC}=\widehat{FCD}\)(2 góc so le trong và AB//CF)

=> \(\Delta BDC=\Delta DCF\)(c = g = c)

c) ta có: 

\(DE=\frac{1}{2}DF\)(E là trung điểm DF)

DF = BC \(\left(\Delta FCD=\Delta BDC\right)\)

=> \(DE=\frac{1}{2}BC\)

30 tháng 4 2024

kk

 

17 tháng 11 2016

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD (c.g.c)

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = \(\frac{1}{2}FD\) (E là trung điểm của FD) => DE = \(\frac{1}{2}BC\)

31 tháng 12 2021

hình đâu bạn banhqua