Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có (3 - 2i)z + (4 + 5i) = 7 + 3i <=> (3 - 2i)z = 7 + 3i - 4 - 5i
<=> z = <=> z = 1. Vậy z = 1.
b) Ta có (1 + 3i)z - (2 + 5i) = (2 + i)z <=> (1 + 3i)z -(2 + i)z = (2 + 5i)
<=> (1 + 3i - 2 - i)z = 2 + 5i <=> (-1 + 2i)z = 2 + 5i
z =
Vậy z =
c) Ta có + (2 - 3i) = 5 - 2i <=> = 5 - 2i - 2 + 3i
<=> z = (3 + i)(4 - 3i) <=> z = 12 + 3 + (-9 + 4)i <=> z = 15 -5i
a) (3 + 2i)[(2 – i) + (3 – 2i)]
= (3 + 2i)(5 – 3i) = 21 + i
b)(4−3i)+1+i2+i=(4−3i)+(1+i)(2−i)5=(4−3i)(35+15i)=(4+35)−(3−15)i=235−145i(4−3i)+1+i2+i=(4−3i)+(1+i)(2−i)5=(4−3i)(35+15i)=(4+35)−(3−15)i=235−145i
c) (1 + i)2 – (1 - i)2 = 2i – (-2i) = 4i
d) 3+i2+i−4−3i2−i=(3+i)(2−i)5−(4−3i)(2+i)5=7−i5−11−2i5=−45+15i
a) thực =1; ảo =4
b)thực= -7; ảo= 6\(\sqrt{2}\)
c)thực=13; ảo=0
d)thực=1; ảo=7
a) (3 - 2i)(2 - 3i) = (6 - 6) + (-9 -4)i = -13i;
b) (-1 + i)(3 + 7i) = (-3 - 7) + (-7 + 3)i = -10 -4i;
c) 5(4 + 3i) = 20 + 15i;
d) (-2 - 5i).4i = -8i - 20i2 = -8i -20(-1) = 20 - 8i
a/ \(\left(2-3i\right)\left(2+3i\right)=4-9i^2=4+9=13\)
b/ \(\left(2+3i\right)\left(4-i\right)=8-2i+12i-3i^2=11+10i\)
c/ \(=\dfrac{\left(1+i\right)\left(2+3i\right)}{4-9i^2}=\dfrac{2+5i-3}{4+9}=\dfrac{5i-1}{13}\)