K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Trên tia đối của tia CB lấy điểm F sao cho \(CF=\frac{1}{2}AM\).

Ta có: \(\Delta ADM\infty\Delta CDF\)vì \(\frac{CD}{AD}=\frac{CF}{AM}=\frac{1}{2}\)và A=C=90 độ.

Suy ra: DM=2DF 

ADM=CDF\(\Rightarrow\)FMD vuông \(\Rightarrow\)EDF+EDM=90 độ \(\Rightarrow\)EDF+CDE=90 độ

Mà DEF+CDE=90 độ

Suy ra: EDF=DEF\(\Rightarrow\)tam giác DEF cân tại F.\(\Rightarrow\)DF=EF

Vậy DM=2DF=2EF=2EC+2CF=2EC+AM

20 tháng 3 2017

chịu bài này quá khó 

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
13 tháng 12 2018

biết làm chưa chỉ với

19 tháng 2 2020

Lấy F trên tia đối của AB sao cho AF=CK

=>AM+CK=AM=MF 3

Xét tam giác DAF và tam giác NCN có

AF=CK(gt)

DAF=DCK(gt DK là pg)

AD=CD(gt)

=> tam giác DAF= tam giác DCK(c-g-c)

=>AFD=CKD( 2 góc t/ứng)

Mà CKD=ADK(slt)=>AFD=ADK 1

Mặt khác ADK= ADM+MDK, MDK=KDC(gt)

=>ADK=ADM+KDC=ADM+ADF 2

Từ 1 và 2=>AFD=ADM+ADF=MDF=>tam giác FMD cân tại M=>FM=MD 4

 Từ 3 và 4=>AM+CK=DM

     -dpcm-

8 tháng 2 2018

A B C D M N E F K I O H

a) Ta thấy: Tam giác ABC vuông tại A; DN vuông góc AC=> DN//AB =>  \(\frac{DF}{FN}=\frac{BM}{AM}\)(Hệ quả của ĐL Thales) (1)

Lại có:  DM vuông góc AB; ^BAC=900 => DM//AC hay EM//AN => \(\frac{BM}{AM}=\frac{BE}{EN}\)(ĐL Thales) (2)

Từ (1) và (2) => \(\frac{DF}{FN}=\frac{BE}{EN}\)=> \(EF\)//\(BD\)(ĐL Thales đảo)

hay \(EF\)//\(BC\)(đpcm)

b) Dễdàng c/m được: Tứ giác AMDN là hình vuông =>  AM=MD=DN=AN

Gọi giao điểm của AE và FM là O

Ta có: \(\frac{DF}{DN}=\frac{BM}{AB}=\frac{BD}{BC}\)(Hệ quả ĐL Thales) (3)

Tương tự: \(\frac{EM}{MD}=\frac{AN}{AC}=\frac{BD}{BC}\)(4)

Từ (3) và (4) => \(\frac{DF}{DN}=\frac{EM}{MD}\)Mà DN=MD => DF=EM.

Xét \(\Delta\)AME và \(\Delta\)MDF:

AM=MD

^AME=^MDF         => \(\Delta\)AME=\(\Delta\)MDF (c.g.c) => ^MAE=^DMF (2 góc tương ứng)

EM=DF (cmt)

Lại có: ^MAE+^MEA=900 => ^DMF+MEA=900 hay ^EMO+^MEO=900

Xét \(\Delta\)MEO: ^EMO+^MEO=900 =. \(\Delta\)MEO vuông tại O => FM vuông góc với AE

Tương tự ta c/m được EN vuông góc với AF 

=> FM và EN là 2 đường cao của tam giác AEF. mà 2 đoạn này cắt nhau tại K

Vậy K là trực tâm tam giác AEF (đpcm).

c) Gọi BI giao AD tại H

K là trực tâm tam giác AEF (cmt) => AK vuông góc EF .Mà EF//BC (cmt) => AK vuông góc với BC

hay AK vuông góc với BD

Xét tam giác BAD:

AK vuông góc BD

DM vuông góc AB          => I là trực tâm tam giác BAD

AK cắt DM tại I

=> BI vuông góc AD => IH vuông góc với AD. 

Lại có ^HDI=^ADM=450 => Tam giác IHD vuông cân tại H

=> ^HID = 450 => ^BID=1350.

Vậy ^BID=1350.

19 tháng 7 2017

lưu ý :  do DM/DN    + DM/DK =1  nên DM<DN , DM <DK

b) theo câu a to có: DM^2 =MN.MK=>DM/MN=MK/DM => DM/(DM+MN) =MK/(MK+DM) => DM/DN =MK/DK =>DM/DN + DM/DK =MK/DK + DM/DK =>DM/DN + DM/Dk =(MK+DM)/DK=DK/DK = 1 (đpcm) A B C D M N K a) do AB//CD (tgABCD là hbh)nên tg AMN đ.dạng vs tgCMD =>MN/DM =AM/CM (1) mặt khác: AD//BC( tgABCD là hbh)=>tg AMD đ.dạng vs tgCMK (T.Lét) (T.Lét) =>DM/MK =AM/CM (2) từ (1) và (2) =>MN/DM=DM/MK=>DM^2 =MN.MK

16 tháng 3 2020

a) Ta có AB // CD (ABCD hbh) -> AMN đồng dạng CMD (talet)

-> \(\frac{MN}{DM}=\frac{AM}{CM}\)(1)

Lại có AD // BC (ABCD hbh) -> AMD đồng dạng CKM (talet)

-> \(\frac{DM}{MK}=\frac{AM}{CM}\)(2)

(1) (2) -> \(\frac{MN}{DM}=\frac{DM}{MK}=DM^2=MK.MN\)

b) Ta có \(\frac{DM}{MK}=\frac{MK}{DM}\left(cma\right)\)

\(\Rightarrow\frac{DM}{DM+MN}=\frac{MK}{MK+DM}\)

\(\Rightarrow\frac{DM}{DN}=\frac{MK}{DK}\)

\(\Rightarrow\frac{DM}{DN}+\frac{DM}{DK}=\frac{MK}{DK}+\frac{DM}{DK}\)

\(\frac{DM}{DN}+\frac{DM}{DK}=\frac{MK+DM}{DK}=\frac{DK}{DK}=1\left(đpcm\right)\)