K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

Bài tập 1:

a) \(\left(a+b+c\right)^2\)\(=\left[\left(a+b\right)+c\right]^2\)

\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\)

b) \(\left(a+b-c\right)^2=\left[\left(a+b\right)-c\right]^2\)

\(=\left(a+b\right)^2-2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2-2ac-2bc+c^2\)

\(=a^2+b^2+c^2+2ab-2bc-2ca\)

c) \(\left(a-b-c\right)^2=\left[\left(a-b\right)-c\right]^2\)

\(=\left(a-b\right)^2-2\left(a-b\right)c+c^2\)

\(=a^2-2ab+b^2-2ac+2bc+c^2\)

\(=a^2+b^2+c^2-2ab+2bc-2ca\)

6 tháng 9 2017

Bài tập 2:

\(49x^2-70x+25=\left(7x\right)^2-2.7x.5+5^2\)

\(=\left(7x-5\right)^2\)

a) Với x = 5 ta có: \(\left(7x-5\right)^2=\left(7.5-5\right)^2\)

\(=30^2=900\)

b) Với x = \(\dfrac{1}{7}\) ta có: \(\left(7x-5\right)^2=\left(7.\dfrac{1}{7}-5\right)^2\)

\(=\left(-4\right)^2=16\)

Vậy ...

25 tháng 6 2017

Câu 1:

a)BĐVT:\(\left(A+B\right)^2=A^2+2AB+B^2\)

                              \(=A^2-2AB+B^2+4AB\)

                                \(=\left(A-B\right)^2+4AB\left(BVT\right)\)

b)\(BĐVT:\left(A-B\right)^2=A^2-2AB+B^2\)

                                      \(=A^2+2AB+B^2-4AB\)

                                        \(=\left(A+B\right)^2-4AB\left(BVP\right)\)

14 tháng 10 2020

Bài 1:

a) \(9x^2-6x+1\)

= \(\left(3x\right)^2\) - 2.3x.1 + 1

= \(\left(3x-1\right)^2\)

Bài 2:

\(\left(a-b\right)^2\)

= \(\left(a+b\right)^2-4ab\)

Thay a + b = 7 và a.b = 12 vào biểu thức

\(7^2\) - 4.12

= 49 - 48

= 1

Bài 3:

a) \(49x^2-70x+25\)

= \(\left(7x\right)^2\) - 2.7x.5 + \(5^2\)

= \(\left(7x+5\right)^2\)

Thay x = \(\frac{1}{7}\) vào biểu thức

\(\left(7.\frac{1}{7}+5\right)^2\)

= \(5^2\)

= 25

b) \(101^2\)

= \(\left(100+1\right)^2\)

= \(100^2+2.100.1+1\)

= 10000 + 200 + 1

= 10201

c) 47.53

= (50 - 3)(50 + 3)

= \(50^2-3^2\)

= 2500 - 9

= 2491

12 tháng 6 2016

1.\(49x^2-70x+25=\left(7x-5\right)^2\)

a);b) Thay số vào và tự tính.

2. a) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)\)

b) \(\left(a+b-c\right)^2=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

c) \(\left(a-b-c\right)^2=a^2+b^2+c^2+2\left(bc-ac-ab\right)\)

23 tháng 6 2017

Bài 1:

a, \(\dfrac{63^2-47^2}{215^2-105^2}=\dfrac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}=\dfrac{16.110}{110.220}=\dfrac{16}{220}=\dfrac{4}{55}\)

b, \(\dfrac{427^2-373^2}{527^2-473^2}=\dfrac{\left(427-373\right)\left(427+373\right)}{\left(527-473\right)\left(527+473\right)}=\dfrac{54.800}{54.1000}=\dfrac{4}{5}\)

Bài 2:

\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50\)

\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52\)

\(2.50< 2.52\Leftrightarrow A< B\)

Vậy A < B

Bài 3: Chỉ cần nhân hết cái trong ngoặc ở VT ra rồi nó sẽ bằng VP

23 tháng 6 2017

HELP ME!!!

Hãy giúp mình hoàn thiện bài trong ngày hôm nay nhé!!!

THANK YOUyeuyeuyeu

4 tháng 4 2020

a/CM: \(\left(\frac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng với mọi a,b>0)

CM: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)

\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

b/CM: \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

\(\Leftrightarrow\frac{4\left(a^3+b^3\right)}{8}\ge\frac{\left(a+b\right)^3}{8}\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng với mọi a,b>0)

c/CM: \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2+ab\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+\frac{2ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right)\ge0\) ( luôn đúng)

d/Ta xét hiệu: \(a^4-4a+3\)

\(=a^4-2a^2+1+2a^2-4a+2\)

\(=\left(a-1\right)^2+2\left(a-1\right)^2\ge0\)

Suy ra BĐT luôn đúng

e/Ta xét hiệu:( Làm nhanh)

\(a^3+b^3+c^3-3abc\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)

f/Ta có: \(\frac{a^6}{b^2}-a^4+\frac{a^2b^2}{4}+\frac{b^6}{a^2}-b^4+\frac{a^2b^2}{4}\)

\(=\left(\frac{a^3}{b}-\frac{ab}{2}\right)^2+\left(\frac{b^3}{a}-\frac{ab}{2}\right)^2\ge0\)(1)

\(\frac{a^2b^2}{4}+\frac{a^2b^2}{4}\ge0\)(2)

Lấy (1) trừ (2) được: \(\frac{a^6}{b^2}+\frac{b^6}{a^2}-a^4-b^4\ge0\RightarrowĐPCM\)

g/Làm rồi..xem lại trong trang cá nhân

h/Xét hiệu có: \(\left(a^5+b^5\right)\left(a+b\right)-\left(a^4+b^4\right)\left(a^2+b^2\right)\)

\(=a^5b+ab^5-a^2b^4-a^4b^2\)

\(=a^4b\left(a-b\right)-ab^4\left(a-b\right)\)

\(=ab\left(a^2-b^2\right)\left(a-b\right)\)

\(=ab\left(a+b\right)\left(a-b\right)^2\ge0\forall ab>0\)

Suy ra ĐPCM

23 tháng 7 2018

\(a,\left(x+2y\right)^2=x^2+4xy+4y^2\)

\(b,\left(3x-2y\right)^2=9x^2-12xy+4y^2\)

\(c,\left(2x-\dfrac{1}{2}\right)^3=8x^3-3.4x^2.\dfrac{1}{2}+3.2x.\dfrac{1}{4}-\dfrac{1}{8}=8x^3-6x^2+\dfrac{3}{2}x-\dfrac{1}{8}\)

\(d,\left(\dfrac{x}{2}-y\right)\left(\dfrac{x}{2}+y\right)=\dfrac{x^2}{4}-y^2\)

\(2;a,x^4+4x^2+4\)

\(=\left(x^2+2\right)^2\)

\(b,4a^2b^2-c^2d^2\)

\(=\left(2ab\right)^2-\left(cd\right)^2\)

\(=\left(2ab-cd\right)\left(2ab+cd\right)\)

2 tháng 9 2019

Bài 62: 25x2y6-60xy4z2+36y2z4=(5xy3)2-2.5xy3.(6yz2)2

Bài 63: 1/9u4v6-1/3u5v4+(1/2u3v)=(1/3u2v3)-2.1/3u2v3.1/2u2v3+(1/2u3v)

3 tháng 9 2019

Viết các biểu thức dưới dạng lập phương của một tổng (các bài 95, 96)

Bài 95:

\(u^3+v^3+3u^2v+3uv^2\)

\(=\left(u+v\right)^3.\)

\(27y^3+9y^2+y+\frac{1}{27}\)

\(=\left(3y\right)^3+3.\left(3y\right)^2.\frac{1}{3}+3.3y.\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3\)

\(=\left(3y+\frac{1}{3}\right)^3.\)

Mình chỉ làm thế thôi nhé.

Chúc bạn học tốt!

3 tháng 9 2019

Bài 92 : \(\left(2x+yz\right)^3=8x^3+12x^2yz+6xy^2z^2+y^3z^3\)

Bài 93 : \(\left(2xy^2+\frac{1}{2}y^3\right)^3=8x^3y^6+6x^2y^7+\frac{3}{2}xy^8+\frac{1}{8}y^9\)

Bài 94 : \(\left(4xy^2+x^3y^3\right)^3=64x^3y^6+48x^5y^5+12x^7y^4+x^9y^3\)

Bài 95 : \(\left(u+v\right)^3=u^3+3u^2v+3uv^2+v^3\)

Bài 96 : \(\left(3y+\frac{1}{3}\right)^3=27y^3+9y^2+y+\frac{1}{27}\)

Bài 97 :

Ta có : \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

= \(x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

= \(x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

= \(x^3+y^3+3xy\left(-2x+3y-2y+3x\right)\)

= \(x^3+y^3+3xy\left(x+y\right)\)

= \(x^3+3x^2y+3xy^2+y^3\) = \(\left(x+y\right)^3\) ( ĐPCM )

Bài 98 :

Ta có : \(x^3+y^3+3xy\left(x+y\right)\)

= \(x^3+3x^2y+3xy^2+y^3\) = \(\left(x+y\right)^3\) ( ĐPCM )

Bài 99 :

Ta có : \(\left(a+b+c\right)^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)+a^3+b^3+c^3\) ( Chứng minh theo nhị thức newton hoặc giải \(\left(a+b+c\right)^3\) )

=> \(\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) ( Chuyển vế )