\(^3\) - 6a\(^2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Phân tích đa thức thành nhân tử

a) Ta có: \(8a^3-6a^2-1+3a\)

\(=\left[\left(2a\right)^3-1^3\right]-3a\left(2a-1\right)\)

\(=\left(2a-1\right)\left(4a^2+2a+1\right)-3a\left(2a-1\right)\)

\(=\left(2a-1\right)\left(4a^2+2a+1-3a\right)\)

\(=\left(2a-1\right)\left(4a^2-a+1\right)\)

b) Ta có: \(x^3-2x^2y+xy^2-9x\)

\(=x\left(x^2-2xy+y^2-9\right)\)

\(=x\left[\left(x^2-2xy+y^2\right)-9\right]\)

\(=x\left[\left(x-y\right)^2-3^2\right]\)

\(=x\left(x-y-3\right)\left(x-y+3\right)\)

c) Ta có: \(5x^2-45\)

\(=5\left(x^2-9\right)\)

\(=5\left(x-3\right)\left(x+3\right)\)

d) Ta có: \(2x^3-4x^2+2x\)

\(=x\left(2x^2-4x+2\right)\)

\(=x\left(2x^2-2x-2x+2\right)\)

\(=x\left[2x\left(x-1\right)-2\left(x-1\right)\right]\)

\(=x\left(x-1\right)\left(2x-2\right)\)

\(=2x\left(x-1\right)^2\)

e) Ta có: \(6x\left(3x-2\right)-12\left(2-3x\right)\)

\(=6x\left(3x-2\right)+12\left(3x-2\right)\)

\(=\left(3x-2\right)\left(6x+12\right)\)

\(=6\left(3x-2\right)\left(x+2\right)\)

f) Ta có: \(4x^2-8xy+4y^2-10\)

\(=\left(2x\right)^2-2\cdot2x\cdot2y+\left(2y\right)^2-10\)

\(=\left(2x-2y\right)^2-10\)

\(=\left(2x-2y-\sqrt{10}\right)\left(2x-2y+\sqrt{10}\right)\)

g) Ta có: \(2x^2-8x+8\)

\(=2\left(x^2-4x+4\right)\)

\(=2\left(x-2\right)^2\)

h) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(=\left[\left(2x+1\right)-\left(x-1\right)\right]\left[\left(2x+1\right)+\left(x-1\right)\right]\)

\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(=3x\left(x+2\right)\)

13 tháng 10 2019

\(e,-5x+x^2-14\)

\(=x^2+2x-7x-14\)

\(=x\left(x+2\right)-7\left(x+2\right)\)

\(=\left(x+2\right)\left(x-7\right)\)

\(f,x^3+8+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+8x+4\right)\)

\(g,15x^2-7xy-2y^2\)

\(=15x^2+3xy-10xy-2y^2\)

\(=3\left(5x+y\right)-2y\left(5x+y\right)\)

\(=\left(5x+y\right)\left(3-2y\right)\)

\(h,3x^2-16x+5\)

\(=3x^2-x-15x+5\)

\(=x\left(3x-1\right)+5\left(3x-1\right)\)

\(=\left(3x-1\right)\left(x+5\right)\)

13 tháng 10 2019

\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)

\(=x\left(x+y\right)^2\)

\(b,4x^2-9y^2+4x-6y\)

\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)

\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

\(c,-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(y-x+5\right)\)

\(d,x^2+4x-12\)

\(=x^2-2x+6x-12\)

\(=x\left(x-2\right)+6\left(x-2\right)\)

\(=\left(x-2\right)\left(x+6\right)\)

24 tháng 9 2017

Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@

B1: Phân tích thành nhân tử:

a) \(6x^2+9x=3x\left(2x+3\right)\)

b) \(4x^2+8x=4x\left(x+2\right)\)

c) \(5x^2+10x=5x\left(x+2\right)\)

d) \(2x^2-8x=2x\left(x-4\right)\)

e) \(5x-15y=5\left(x-3y\right)\)

f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)

g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)

\(=\left(x-1-2y\right)\left(x-1+2y\right)\)

h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)

i) \(9x^2-18x+9=\left(3x-3\right)^2\)

k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)

m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)

\(=-\left(2x-y\right)^2\)

n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)

\(=\left(x-31\right)\left(x+1\right)\)

o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)

\(=\left(2+x\right)\left(8+x\right)\)

p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)

\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)

\(=\left(5x-5\right)\left(9x-3\right)\)

24 tháng 9 2017

Bài 1 :

a ) \(6x^2+9x=3x\left(x+3\right)\)

b ) \(4x^2+8x=4x\left(x+2\right)\)

c ) \(5x^2+10x=5x\left(x+2\right)\)

d ) \(2x^2-8x=2x\left(x-4\right)\)

e ) \(5x-15y=5\left(x-3y\right)\)

f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)

h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)

i ) \(9x^2-18x+9=\left(3x-3\right)^2\)

k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)

l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)

m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)

n ) \(\left(x-15\right)^2=x^2-30x+15^2\)

o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)

p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)

Bài 2 :

a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)

b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)

c ) \(2x+x^2-2y-2xy=......................\)

d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)

e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)

f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)

29 tháng 6 2018

Bài nhiều quá... nhìn mik nổi gai ốc lun...oh my god sao mà nhiều vậy nè .

Mik định giải giúp bạn nhưng bây h mik hoảng quá ... nhiều vậy chắc mik chết mất... ToT ... >.<  =)))

30 tháng 6 2018

2x2 + x 

= x (2x + x)

29 tháng 6 2018

\(1\hept{\begin{cases}6x^2-8x+3x-4\\2x\left(3x-4\right)+\left(3x-4\right)\\\left(3x-4\right)\left(2x+1\right)\end{cases}}\)

\(2\hept{\begin{cases}7x^2-7xy-5x+5y+6xy\\7x\left(x-y\right)-5\left(x-y\right)+\frac{6xy\left(x-y\right)}{\left(x-y\right)}\\\left(x-y\right)\left(7x-5+\frac{6xy}{\left(x-y\right)}\right)\end{cases}}\)

\(3\hept{\begin{cases}5x\left(x-y\right)-15\left(x-y\right)\\\left(x-y\right)\left(5x-15\right)\end{cases}}\)

\(4,,2x^2+x=x\left(2x+1\right)\)

\(5\hept{\begin{cases}x^3-4x-3x^2+12\\x\left(x^2-4\right)-3\left(x^2-4\right)\\\left(x+2\right)\left(x-2\right)\left(x-3\right)\end{cases}}\)

\(6\hept{\begin{cases}2x+2y+x^2-y^2\\2\left(x+y\right)+\left(x+y\right)\left(x-y\right)\\\left(x+y\right)\left(2+x-y\right)\end{cases}}\)

\(7\hept{\begin{cases}\left(x^2y-2xy\right)-\left(xy-2y\right)+\left(xy-y\right)\\xy\left(x-2\right)-y\left(x-2\right)+y\left(x-1\right)\\y\left(X-2\right)\left(x-1\right)+y\left(x-1\right)\end{cases}}\Leftrightarrow y\left(x-1\right)\left(x-2+1\right)\)

\(8\hept{\begin{cases}x\left(2-y\right)+z\left(2-y\right)\\\left(2-y\right)\left(x+1\right)\end{cases}}\)

16 tháng 9 2018

\(2x^2+x\)

\(=x\left(2x+1\right)\)

.

hk 

tốt

22 tháng 8 2018

xin lỗi bài này mình không biết

Phân tích đa thức thành nhân tử:

a) Ta có: \(3x^2-8xy+5y^2\)

\(=3x^2-3xy-5xy+5y^2\)

\(=3x\left(x-y\right)-5y\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5y\right)\)

b) Ta có: \(8xy^3+x\left(x-y\right)^3\)

\(=x\left[8y^3-\left(x-y\right)^3\right]\)

\(=x\left[2y-\left(x-y\right)\right]\left[4y^2+2y\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=x\left(2y-x+y\right)\left(4y^2+2xy-2y^2+x^2-2xy+y^2\right)\)

\(=x\left(3y-x\right)\left(3y^2+x^2\right)\)

c) Ta có: \(2x\left(x-3\right)-x+3\)

\(=2x\left(x-3\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(2x-1\right)\)

d) Ta có: \(x^4-4x^3+4x^2\)

\(=x^2\left(x^2-4x+4\right)\)

\(=x^2\cdot\left(x-2\right)^2\)

e) Ta có: \(4x^2+4xy-4z^2+y^2-4z-1\)

\(=\left(4x^2+4xy+y^2\right)-\left(4z^2+4z+1\right)\)

\(=\left(2x+y\right)^2-\left(2z+1\right)^2\)

\(=\left(2x+y-2z-1\right)\left(2x+y+2z+1\right)\)

f) Ta có: \(x^2-2xy+y^2-x+y-6\)

\(=\left(x-y\right)^2-\left(x-y\right)-6\)

\(=\left(x-y\right)^2-3\left(x-y\right)+2\left(x-y\right)-6\)

\(=\left(x-y\right)\left(x-y-3\right)+2\left(x-y-3\right)\)

\(=\left(x-y-3\right)\left(x-y+2\right)\)

g) Ta có: \(x^2\left(x+3\right)^2-\left(x+3\right)^2-\left(x^2-1\right)\)

\(=x^2\left(x^2+6x+9\right)-\left(x^2+6x+9\right)-x^2+1\)

\(=\left(x^2-6x+9\right)\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-6x+9-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2-6x+8\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-4\right)\)

5 tháng 8 2016

a) \(45+x^3-5x^2-9x\)

\(=\left(x^3-5x^2\right)-\left(9x-45\right)\)

\(=x^2\left(x-5\right)-9\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-9\right)=\left(x-5\right)\left(x-3\right)\left(x+3\right)\)

 

 

5 tháng 8 2016

\(a,45+x^3-5x^2-9x\)
\(=\left(x^3-5x^2\right)+\left(45-9x\right)\)
\(=x^2\left(x-5\right)+9\left(5-x\right)\)
\(=x^2\left(x-5\right)-9\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2-9\right)\)
\(=\left(x-5\right)\left(x^2-3^2\right)\)
\(=\left(x-5\right)\left(x+3\right)\left(x-3\right)\)
\(c,2x^2+3x-5\)
\(=2x^2-2x+5x-5\)
\(=2x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(2x+5\right)\)
\(e,\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\left(2\right)\)
(1)\(\Leftrightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\left(3\right)\)
Thay (3) vào (2),ta được:\(\left(x^2+10x+20\right)^2\)

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)