K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2015

555 x 678 = 111 x 5 x 678 = 111 x 3390 = 376290

13 tháng 7 2015

 = 111 x 5 x 678

= 111 x 3390

= 376290

   **** cho mình nhé !

26 tháng 8 2015

\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)

\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.\left(1+5\right)}{6^{12}-6^{11}}=\frac{2^{12}.3^{10}.6}{6^{11}.\left(6-1\right)}=\frac{2^{12}.3^{10}.2.3}{6^{11}.\left(6-1\right)}=\frac{2^{13}.3^{11}}{6^{11}.5}=\frac{2^{11}.3^{11}.2^2}{6^{11}.5}=\frac{6^{11}.4}{6^{11}.5}=\frac{4}{5}\)

26 tháng 8 2015

Bài2

a) ta có : 10^19 + 10^18 +10^17 = 10^17 (10^2+10+1)

                                               = 10^17 . 111

Do 10 chia hết cho 5 nên 10^17 cũng chia hết cho 5. Mà 10^17 cũng chia hết cho 111 

nên 10^17 chia hết cho 111x5 = 555 ( vì (111;5)=1)

Vậy 10^19 + 10^18 + 10^17 chia hết cho 555

b) Ta có : 7+7^2+7^3+7^4+...+7^84

              = (7+7^2+7^3)+(7^4+7^5+7^6)+...+(7^82+7^83+7^84)

              = 7(1+7+7^2) + 7^4(1+7+7^2)+...+7^82(1+7+7^2)

              = 7.57           +  7^4.57        +...+   7^82.57

               = 57(7.7^4....7^82) chia hết cho 57

Vậy 7+7^2+7^3+...+7^84 chia hết cho 57

Ta có \(222^{555}=\left(222^5\right)^{111}=\left(2^5.111^5\right)^{111}=\left(32.111^5\right)^{111}\) 

         \(555^{222}=\left(555^2\right)^{111}=\left(5^2.111^2\right)^{111}=\left(25.111^2\right)^{111}\) 

Do \(32.111^5>25.111^2\) nên \(222^{555}>555^{222}\)

=5/7+3/5+1/5=5/7+4/5=25/35+28/35=53/35

7 tháng 9 2019

a/ So sánh 222555 và 555222

Ta có 222555=(2225)111=(25.1115)111=(32.1115)111;555222=(5552)111=(52.1112)111=(25.1112)111

Ta thấy ngay 32.1115>5.1112

Vậy 222555>555222

b/So sánh 3012 và1018

Ta có 3012=(302)6=9006;1018=(103)6=10006

Ta thấy 900<1000

Vậy 3012 <1018

c/So sánh 536 và1024

Ta có \(\frac{5^{36}}{10^{24}}=\frac{5^{36}}{2^{24}.5^{24}}=\frac{5^{12}}{2^{24}}=\left(\frac{5}{2^2}\right)^{12}=\left(\frac{5}{4}\right)^{12}>1\)

Vậy 536>1024

7 tháng 9 2019

tặng 3 tym cho những người trả lời nhanh nhất

thời gian từ đây đến 5 giờ chiều

22 tháng 3 2017

555 ^ 2 ≡ 5 (mod 10)
555 ^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777đồng dư với 333^5
Do 333^5=333^2.333^3≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2) Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.

23 tháng 3 2017

thực sự là mk ko hĩu

28 tháng 2 2019

\(555\equiv-1\left(\text{mod 4}\right)\Rightarrow555^{777}\equiv\left(-1\right)^{777}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)

\(\Rightarrow\text{555^777 chia 4 dư 3. }\)

\(555^{333}\equiv\left(-1\right)^{333}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)

\(\Rightarrow\text{555^333 chia 4 dư 3}\)

\(\text{Đến đây dễ rồi -__-}\)

3 tháng 4 2019

Ta có:

5552≡5 (mod 10)

5553≡5( mod 10)

5555=5552.5553≡5.5≡5(mod 10)

---> 555777≡5(mod 10)

Suy ra:

333555777đồng dư với 3335

Do 3335=3332.3333≡3(mod 10)

Vậy chữ số tận cùng của 333555777là 3 (1)

Làm tương tự với 777555333có chữ số tận cùng là 7 (2)

Từ (1) và (2) suy ra 333555777+777555333có chữ số tận cùng là 0

Vậy 333555777+777555333chia hết cho 10 (đpcm)

20 tháng 7 2016

Ta có

333 chia hết cho 37 

=> 333555 chia hết cho 37

  Chứng minh tương tự

=> 555333 chia hết cho 37

Vậy 333555  +  555333  chia  hết cho 37