Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{203}{3^{100}}< 3\)
\(A< \frac{3}{4}\left(đpcm\right)\)
- 1 số bài toán tương tự:
CMR: \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{100}{4^{100}}< \frac{4}{9}\)
Dạng tổng quát: CMR: \(\frac{1}{k}+\frac{2}{k^2}+\frac{3}{k^3}+\frac{4}{k^4}+...+\frac{n}{k^n}< \frac{k}{\left(k-1\right)^2}\)(k;n \(\in\) N*; k > 1)
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
1)\(3C=1+\frac{2}{3}+...+\frac{100}{3^{99}}\)
\(3C-C=\left(1+\frac{2}{3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{100}{3^{100}}\right)\)
\(2C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(3M-M=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)
\(2M=3-\frac{1}{3^{99}}\)
\(M=\frac{3}{2}-\frac{1}{3^{99}\cdot2}\)
\(\Rightarrow2C=M-\frac{100}{3^{100}}\)
\(\Rightarrow2C=\frac{3}{2}-\frac{1}{3^{99}\cdot2}-\frac{100}{3^{100}}\)
\(\Rightarrow2C< \frac{3}{2}\)
\(\Rightarrow C< \frac{3}{4}\)
C=1+3+32+.............+3100
C=\(\frac{3C-C}{2}\)
3C=3+32+33+.............+399+3100+3101
C=1+3+32+..................+399+3100
3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100)
Triệt tiêu các số hạng co giá trị tuyệt đối bằng nhau, ta được:
2C=-1+3100
\(\Rightarrow C=\frac{3^{100}-1}{2}\)
D=\(\frac{2D+D}{3}\)
2D=2101-2100+299-298+..............+23-22
D=2100-299+298-297+............+22-2
2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2
Triệt tiêu các số hạng có giá trị tuyệt đối bằng nhau, ta được:
3D=2101-2
\(\Rightarrow D=\frac{2^{101}-2}{3}\)
B=\(\frac{3}{1\times4}+\frac{5}{4\times9}+\frac{7}{9\times16}+.........+\frac{19}{81\times100}\)
Quan sát biểu thức, ta có nhận xét:
4-1=3;
9-4=5;
16-9=7;
.......;100-81=19
=> Hiệu hai số ở mẫu bằng giá trị ở tử
\(\Rightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.......+\frac{1}{81}-\frac{1}{100}\)
\(\Rightarrow B=1-\frac{1}{100}\)
\(B=\frac{99}{100}< \frac{100}{100}\)
Vậy B<1
Ta có :
\(A=\frac{1}{3}+\frac{2}{3^2}+......+\frac{100}{3^{100}}\) \(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+.....+\frac{100}{3^{99}}\)
\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)= 2A
Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\) \(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\)
\(\Rightarrow3B-B=3-\frac{1}{3^{99}}=2B\) \(\Rightarrow B=\frac{3}{2}-\frac{1}{3^{99}.2}\)
\(\Rightarrow2A=\frac{3}{2}-\frac{1}{3^{99}.2}-\frac{100}{3^{100}}\)\(\Rightarrow A=\frac{3}{4}-\frac{1}{3^{99}.4}-\frac{100}{3^{100}}< \frac{3}{4}\Rightarrow\left(đpcm\right)\)
Ta có :
\(C=1+3+3^2+....+3^{100}\) \(\Rightarrow C-1=3+3^2+....+3^{100}\)
\(\Rightarrow3\left(C-1\right)=3^2+3^3+.....+3^{101}\)\(\Rightarrow3C-3-\left(C-1\right)=3^{101}-3\)
\(\Rightarrow2C-2=3^{101}-3\Rightarrow2C=3^{101}-1\)\(\Rightarrow C=\frac{3^{101}-1}{2}\)
Ta có :
\(D=2^{100}-2^{99}+2^{98}-.....-2\) \(\Rightarrow2D=2^{101}-2^{100}+2^{99}-.....-2^2\)
\(\Rightarrow2D+D=2^{101}-2=3D\) \(\Rightarrow D=\frac{2^{101}-2}{3}\)
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(2A=1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)
Ta thấy biểu thức trong dấu ngoặc nhỏ hơn 1/2 ( tự chứng minh ) nên 2A < 1 + 1/2
\(\Rightarrow A< \frac{3}{4}\)
\(C=1+3+3^2+3^3+...+3^{100}\)
\(3C=3+3^2+3^3+3^4+...+3^{101}\)
\(3C-C=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)
\(2C=3^{101}-1\)
\(C=\frac{3^{101}-1}{2}\)