Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)
\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
Bài 9A:
\(a,\left(x+5\right)^2-\left(x-5\right)^2-2x+1=0\\ \Leftrightarrow\left(x^2+10x+25\right)-\left(x^2-10x+25\right)-2x+1=0\\ \Leftrightarrow x^2-x^2+10x+10x-2x=-1-25+25\\ \Leftrightarrow18x=-1\\ \Leftrightarrow x=-\dfrac{1}{18}\\ b,\left(2x-7\right)^2-\left(x+3\right)^2=3x^2+6\\ \Leftrightarrow4x^2-28x+49-x^2-6x-9-3x^2-6=0\\ \Leftrightarrow4x^2-x^2-3x^2-28x-6x=6+9-49\\ \Leftrightarrow22x=-34\\ \Leftrightarrow x=-\dfrac{17}{11}\\ c,\left(3x+2\right)^2-9\left(x-5\right)\left(x+5\right)=225-5x\\ \Leftrightarrow9x^2+12x+4-9\left(x^2-25\right)=225-5x\\ \Leftrightarrow9x^2-9x^2+12x+5x=225-4+9.25\\ \Leftrightarrow17x=446\\ \Leftrightarrow x=\dfrac{446}{17}\)
Sao bài này câu nào x cũng k nguyên ta, hơi xấu hi
9B
\(a,\left(4x-1\right)^2-4\left(2x-3\right)^2-x-4=0\\ \Leftrightarrow16x^2-8x+1-4\left(4x^2-12x+9\right)-x-4=0\\ \Leftrightarrow16x^2-16x^2-8x+48x-x=4+36-1\\ \Leftrightarrow39x=39\\ \Leftrightarrow x=1\\ b,x\left(x-5\right)-\left(4-x\right)^2=7x+1\\ \Leftrightarrow x^2-5x-\left(16-8x+x^2\right)-7x-1=0\\ \Leftrightarrow x^2-x^2-5x+8x-7x=1+16\\ \Leftrightarrow-4x=17\\ \Leftrightarrow x=\dfrac{-17}{4}\\ c,\left(2x-6\right)\left(x+3\right)=2\left(x-3\right)^2\\ \Leftrightarrow2x^2-6x+6x-18=2\left(x^2-6x+9\right)\\ \Leftrightarrow2x^2-2x^2-6x+6x+12x=18+18\\ \Leftrightarrow12x=36\\ \Leftrightarrow x=\dfrac{36}{12}=3\)