\(\sqrt{x^2-9}-3\sqrt{x-3}\)=0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2016

\(\sqrt{x^2-9}-3\sqrt{x-3}=0\)

=>\(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

=>\(\sqrt{x-3}.\sqrt{x+3}-3\sqrt{x-3}=0\)

=>\(\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=6\end{cases}}\)

18 tháng 10 2016

Bài này bạn phải tìm ĐKCĐ đã chứ

 -Ta có ĐKXĐ để các căn thức xác định là x phải thỏa mãn đồng thời hai bất đẳng thức

 x^2-9 >=0 và x-3 >=0

-Ta sẽ tìm được x>= 3 là điiều kiện để đồng thời có

x^2-9>=0 và x-3 >=0

-Vậy để tìm x thỏa mãn đẳng thức đã cho ta đưa về tìm x thỏa mãn

           \(\sqrt{x-3}\sqrt{x+3}-3\sqrt{x-3}=0\)

hay \(\sqrt{x-3}\)(\(\sqrt{x+3}-3\))=0

=>\(\orbr{\begin{cases}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=6\end{cases}}}\)

(thỏa mãn)

Vậy x=3 hoặc x=6

anh em giúp mình bài này với

21 tháng 9 2017

pt đặt ẩn phụ đó

11 tháng 5 2020

Ta sẽ sử dụng đánh giá \(x^3+\frac{1}{x^3}\ge\frac{1}{\left(1+9^3\right)^2}\left(x+\frac{81}{x}\right)^3\)

Dấu "=" xảy ra <=> x=\(\frac{1}{3}\)

Sử dụng đánh giá trên ta có: \(\hept{\begin{cases}\sqrt[3]{a^3+\frac{1}{a^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(a+\frac{81}{a}\right)\\\sqrt[3]{b^3+\frac{1}{b^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(b+\frac{81}{b}\right)\\\sqrt[3]{c^3+\frac{1}{c^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(c+\frac{81}{c}\right)\end{cases}}\)

Cộng theo vế ta được \(P=\sqrt[3]{a^3+\frac{1}{a^3}}+\sqrt[3]{b^3+\frac{1}{b^3}}+\sqrt[3]{c^3+\frac{1}{c^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(a+b+c+\frac{81}{a}+\frac{81}{b}+\frac{81}{c}\right)\)

Ta lại có: \(a+b+c+\frac{81}{a}+\frac{81}{b}+\frac{81}{c}\ge a+b+c+\frac{729}{a+b+c}=a+b+c+\frac{1}{a+b+c}+\frac{729}{a+b+c}\)

\(\ge2+728=730\)

=> \(P\ge\frac{730}{\sqrt[3]{\left(1+9^3\right)^2}}=\sqrt[3]{730}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

11 tháng 5 2020

Hey Hải Nhật, mk có bảo bạn giải đâu ạ? Lời giải này thì mk biết lâu r, (chép trong tài liệu), nhưng mình hỏi cách tìm bđt phụ kia cơ mà

25 tháng 8 2019

a.\(DK:\frac{2}{3}\le x< 4\)

b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\) 

c.\(DK:x\le-3\)

25 tháng 8 2019

Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn

a: \(=\dfrac{\left(1-\sqrt{2}\right)^2}{1-\sqrt{2}}=1-\sqrt{2}\)

b: \(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{x-y}=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

d: \(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x-y}=\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

28 tháng 11 2015

Tất cả các bài này nếu lười suy nghĩ thì bình lên bậc 4 rồi dùng máy tính bỏ túi tìm nghiệm và phân tích nhân tử!

1/\(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

\(VT=\sqrt{3}\left[2\left(x^2-x+1\right)-\left(x^2+x+1\right)\right]\)

Có dạng đẳng cấp rồi.

2/ \(x^4+1=\left(x^2+1\right)^2-2x^2=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)

\(VT=\left(x^2+\sqrt{2}x+1\right)+3\left(x^2-\sqrt{2}x+1\right)\)-> dạng đẳng cấp

3/ tương tự: \(x^3+3x^2+4x+2=\left(x^2+2x+2\right)\left(x+1\right)\)

\(VT=3\left(x^2+2x+2\right)-8\left(x+1\right)????\)

4/ Chuyển vế căn ở giữa, bình phương thu gọn rồi làm giống như 3 bài ở trên.

5/ Có lẽ tương tự

 

21 tháng 8 2020

BÀI 1:

a) 

PT <=>    \(3x-2=7-4\sqrt{3}\)

<=>    \(3x=9-4\sqrt{3}\)

<=>    \(x=3-\frac{4}{\sqrt{3}}\)

b)

pt =>   \(x+1=14-6\sqrt{5}\)

<=>   \(x=13-6\sqrt{5}\)

BÀI 2: 

a)

pt <=>   \(\sqrt{x^2-9}=3\sqrt{x-3}\)

<=>   \(x^2-9=9\left(x-3\right)\)

<=>   \(x^2-9=9x-27\)

<=>   \(x^2-9x+18=0\)

<=>   \(\orbr{\begin{cases}x=6\\x=3\end{cases}}\)

21 tháng 8 2020

BÀI 2: 

b)

pt <=>   \(\sqrt{x^2-4}=2\sqrt{x+2}\)

<=>   \(x^2-4=4\left(x+2\right)\)

<=>   \(x^2-4=4x+8\)

<=>   \(x^2-4x-12=0\)

<=>   \(\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)

BÀI 3:

pt <=>   \(x^2=5\)

<=>   \(\orbr{\begin{cases}x=\sqrt{5}\\x=-\sqrt{5}\end{cases}}\)

1 tháng 8 2017

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

3 tháng 8 2017

Biên cưng. Minh Quân đây. 

8 tháng 9 2018

\(a.\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\sqrt{2+\sqrt{3}}.\)

\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3+1}\right)^2}\)

\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)^2=\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)\)

\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\left(2^2-\sqrt{3}^2\right)=2\)

\(1.A=x-3\sqrt{x}+5=\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)          Điều kiện: \(x\ge0\)
\(\Rightarrow MinA=\frac{11}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\left(TM\right)\)
\(2.B=\left(x-2015\right)-\sqrt{x-2015}+2015=\left(\sqrt{x-2015}-\frac{1}{2}\right)^2+2015-\frac{1}{4}\)    điều kiện: \(x\ge2015\)
\(B\ge2015-\frac{1}{4}=\frac{8059}{8060}\)
Dấu "=" xảy ra khi \(\sqrt{x-2015}-\frac{1}{2}=0\Leftrightarrow x-2015=\frac{1}{2^2}\Leftrightarrow x=\frac{8061}{8060}\left(TM\right)\)