Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
\(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x^2-1\right)\)
\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)
\(=\left(x^3+x-1\right)\left(x+1\right)\)
Bài 1:
a.
$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$
$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$
b.
$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$
$=(x-1)^2(x+1)^2$
c.
$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$
$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$
d.
$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$
$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$
Bài 2:
a. $(3x+4)^2-(3x-1)(3x+1)=49$
$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$
$\Leftrightarrow (3x+4)^2-(3x)^2=48$
$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$
$\Leftrightarrow 4(6x+4)=48$
$\Leftrightarrow 6x+4=12$
$\Leftrightarrow 6x=8$
$\Leftrightarrow x=\frac{4}{3}$
b. $x^2-4x+4=9(x-2)$
$\Leftrightarrow (x-2)^2=9(x-2)$
$\Leftrightarrow (x-2)(x-2-9)=0$
$\Leftrightarrow (x-2)(x-11)=0$
$\Leftrightarrow x-2=0$ hoặc $x-11=0$
$\Leftrightarrow x=2$ hoặc $x=11$
c.
$x^2-25=3x-15$
$\Leftrightarrow (x-5)(x+5)=3(x-5)$
$\Leftrightarrow (x-5)(x+5-3)=0$
$\Leftrightarrow (x-5)(x+2)=0$
$\Leftrightarrow x-5=0$ hoặc $x+2=0$
$\Leftrightarrow x=5$ hoặc $x=-2$
\(m^3+m^2-2m=0\)
\(\Leftrightarrow m^3+2m^2-m^2-2m=0\)
\(\Leftrightarrow m^2\left(m+2\right)-m\left(n+2\right)=0\)
\(\Leftrightarrow\left(m^2-m\right)\left(m+2\right)=0\)
\(\Leftrightarrow m\left(m-1\right)\left(m+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m-1=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\\m=-2\end{matrix}\right.\)
Vậy...
b)x3-2x2-4xy2+x
=x(x2-2x-4y2+1)
=x[(x2-2x+1)-4y2]
=x[(x-1)2-4y2]
=x(x-1-2y)(x-1+2y)
c) (x+2)(x+3)(x+4)(x+5)-8
=[(x+2)(x+5)][(x+3)(x+4)]-8
=(x2+5x+2x+10)(x2+4x+3x+12)-8
=(x2+7x+10)(x2+7x+12)-8
đặt x2+7x+10 =a ta có
a(a+2)-8
=a2+2a-8
=a2+4a-2a-8
=(a2+4a)-(2a+8)
=a(a+4)-2(a+4)
=(a+4)(a-2)
thay a=x2+7x+10 ta đc
(x2+7x+10+4)(x2+7x+10-2)
=(x2+7x+14)(x2+7x+8)
bài 2 x3-x2y+3x-3y
=(x3-x2y)+(3x-3y)
=x2(x-y)+3(x-y)
=(x-y)(x2+3)
\(M=\left(\dfrac{1}{3}t\right)^2-4\left(t-v\right)^2+2tv+9v^2\)
\(=\left(\dfrac{1}{3}\cdot6\right)^2-4\cdot\left(6+1\right)^2+2\cdot6\cdot\left(-1\right)+9\)
\(=4-28-12+9\)
=-27
\(N=8\left(x-3\right)\left(2x+3\right)+\left(2x-6\right)^2+4\left(2x+3\right)^2\)
\(=8\left(2x^2+3x-6x-9\right)+4x^2-24x+36+4\left(4x^2+12x+9\right)\)
\(=8\left(2x^2-3x-9\right)+4x^2-24x+36+16x^2+48x+36\)
\(=16x^2-24x-9+20x^2+24x+72\)
\(=36x^2\)
\(=36\cdot\dfrac{9}{4}=81\)
a. \(M=\left(\dfrac{t}{3}\right)^2+2tv+9v^2-4\left(t-v\right)^2\)
\(=\left(\dfrac{t}{3}+3v\right)^2-4\left(t-v\right)^2\)
\(=\left(\dfrac{t}{3}+3v-2t+2v\right)\left(\dfrac{t}{3}+3v+2t-2v\right)\)
\(=\left(\dfrac{t}{3}+5v-2t\right)\left(\dfrac{t}{3}+v+2t\right)\)
Thay \(t=6\) và \(v=-1\) vào \(M\), ta được
\(M=\left(2-5-12\right)\left(2-1+12\right)=-15.13=-195\)