Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)
\(\Rightarrow 13^t=3^t+4^t+12^t\)
\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)
Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)
Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)
Đáp án B
cho em hỏi tại sao lại có 3^t +4^t +12^t=13^t. Với lại em không hiểu chỗ tại sao hàm số nghịch biến. Và tại sao từ \(\log_{abc}144=\log144_{144^t}=\dfrac{1}{t}\)
\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)
\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)
Tương tự cho các số còn lại rồi cộng vào sẽ được
\(S\le\dfrac{3}{2}\)
Dấu "=" khi a=b=c=1
Vậy
\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)
\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)
Cmtt rồi cộng vào ta đc đpcm
Dấu "=" khi x = y = z = 1/3
\(\int\dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx=\int\dfrac{d\left(e^x+e^{-x}\right)}{e^x+e^{-x}}=ln\left|e^x+e^{-x}\right|+C\)
đặt \(t=\dfrac{1}{a^2}\)
khi đó: \(\dfrac{1}{a^2}-\dfrac{12}{a^4}=t-12t^2+0=-12\left(t+\dfrac{1}{-24}\right)^2+\dfrac{1}{48}\)
vì: \(-12\left(t-\dfrac{1}{24}\right)^2\le0\) nên \(-12\left(t-\dfrac{1}{24}\right)^2+\dfrac{1}{48}\le\dfrac{1}{48}\)
hay \(\dfrac{1}{a^2}-\dfrac{12}{a^4}\le\dfrac{1}{48}\)
dấu "=" xảy ra khi \(t=\dfrac{1}{24}\Rightarrow\dfrac{1}{a^2}=\dfrac{1}{24}\Rightarrow a^2=24\Rightarrow a=\sqrt{24}\)
là sao