\(N=\left(1+\frac{1}{a+x}\right):\left(a-\frac{a}{a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

9) bài này nhiều cách thay lắm. chả biết cách nào nhanh hơn. 

ĐK : ...

\(N=\frac{a+x+1}{a+x}:\frac{a^2+ax-a}{a+x}.\left[\frac{2ax-1+\left(a^2+x^2\right)}{2ax}\right]\)

\(N=\frac{a+x+1}{a+x}.\frac{a+x}{a\left(a+x-1\right)}.\frac{\left(a+x\right)^2-1}{2ax}\)

\(N=\frac{a+x+1}{a\left(a+x-1\right)}.\frac{\left(a+x-1\right)\left(a+x+1\right)}{2ax}\)

\(N=\frac{\left(a+x+1\right)^2}{2a^2x}=\frac{\left(a+1+\frac{1}{a-1}\right)^2}{\frac{2a^2}{a-1}}\)

\(N=\frac{\left(\frac{\left(a+1\right)\left(a-1\right)+1}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\left(\frac{a^2}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\frac{a^4}{\left(a-1\right)^2}}{\frac{2a^2}{a-1}}=\frac{a^2}{2\left(a-1\right)}\)

10) \(3a^2+3b^2=10ab\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)

\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3a=b\\a=3b\left(loai-vi-b>a>0\right)\end{cases}}\)

Thay 3a = b vào biểu thức, ta có :

\(P=\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=\frac{-1}{2}\)

17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40

                 

1a)

Đặt \(a^2+a+1=t\Rightarrow a^2+a+2=t+1\)

\(\Rightarrow A=t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12=\left(t-3\right)\left(t+4\right)\)

\(=\left(a^2+a-2\right)\left(a^2+a+5\right)\)

Mà \(a>1\Rightarrow\hept{\begin{cases}a^2+a-2>0\\a^2+a+5>0\end{cases}}\forall a>1\)

Vậy A là hợp số

1b)

Ta có :

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1=....=\left(2^{1006}-1\right)\left(2^{1006}+1\right)+1\)

\(=2^{2012}-1+1=2^{2012}\)

29 tháng 11 2016

\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)

\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)

\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)

\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)

\(=\frac{2005\times2010-6}{2005\times2011}\)

\(=\frac{2004}{2005}\)

10 tháng 9 2018

bạn vào loigiaihay rồi chọn toán lớp 8 rồi chọn đẳng thức đáng nhớ

10 tháng 9 2018

dễ mà áp dụng hết hằng đẳng thức nếu bạn thuộc hằng đẳng thức mik chỉ làm mỗi bài 1 ý nha xong dựa vô mà làm

\(1a.\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2\)

                                   \(=4y^2+12xy+9y^2\)

\(2a.x^2-6x+9\)

\(=x^2-2.x.3+3^2\)

\(=\left(x-3\right)^2\)

4 tháng 7 2020

easy !

Áp dụng bđt cauchy schwarz dạng engel :

\(VT=\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{3^2}{1}=9\)

dấu = xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

Có thưởng thì thưởng số chẵn a nhé :)) ko thích 1001 đâu !

Bài 1 : 

a, \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)

\(=x-2x^2+2x^2-x+d=d\)

Đặt \(f\left(x\right)=0\)hay \(d=0\)

Vậy phươnng trình có nghiệm là d = 0 (đề có j sai ko nhỉ?)

b, \(g\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)

Ta có : \(\left(-1\right)^2-4=1-4< 0\)Vô nghiệm 

6 tháng 2 2017

1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)

\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm 

2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)

tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1

3) kiểm tra lại xem đề đã chuẩn chưa

18 tháng 8 2018

a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )

        \(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

         \(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

           \(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

            \(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)

b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x

                                         <=> 1-2x thuộc Ư(2) = {1;2;-1;-2}

Nếu 1-2x = 1 thì 2x = 0 => x= 0

Nếu 1-2x = 2 thì 2x = -1 => x = -1/2

Nếu 1-2x = -1 thì 2x = 2 => x =1

Nếu 1-2x = -2 thì 2x = 3 => x = 3/2

Vậy ....