Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(4^3.2^4\div\left(4^2.\frac{1}{32}\right)\)
\(=\left(2^2\right)^3.2^4\div\left(2^2\right)^2\div32\).
\(=2^{\left(2.3\right)}.2^4\div2^{\left(2.2\right)}\div2^5\)
\(=2^6.2^4\div2^4\div2^5\)
\(=2^{6+4-4-5}=2^1\)
b)\(\left(\frac{1}{5}\right)^5=\frac{1}{5^5}=\left|5^5\right|=5^{-5}\)
\(\frac{1}{125}=\frac{1}{5^3}=\left|5^3\right|=5^{-3}\)
c)\(\frac{4}{25}=\frac{2^2}{5^2}=\left(\frac{2}{5}\right)^2=0,4^2\)
\(\frac{-8}{125}=\frac{-2^3}{5^3}=\left(\frac{-2}{5}\right)^2=-0,4^3=0,4^{-3}\)
\(\frac{16}{625}=\frac{2^4}{5^4}=\left(\frac{2}{5}\right)^4=0,4^4\)
\(a,81^3\cdot\frac{1}{9^2}:3^3=\left(9^2\right)^3\cdot\frac{1}{9^2}:3^3=9^6\cdot\frac{1}{9^2}\cdot\frac{1}{3^3}=\frac{9^6}{9^2}\cdot\frac{1}{3^3}=9^4\cdot\frac{1}{3^3}=\left(3^2\right)^4\cdot\frac{1}{3^3}=\frac{3^8}{3^3}=3^5\)
\(b,625^4:25^2=\left(5^4\right)^4:\left(5^2\right)^2=5^{16}:5^4=5^{12}\)
Câu 1 :
a) \(4.\left(\frac{1}{32}\right)^{-2}:\left(2^3.\frac{1}{16}\right)\)
\(=2^2.32^2:\left(\frac{1}{8}.16\right)=\left(2.32\right)^2:2=64^2:2\)
\(=2048=2^{11}\)
b) \(5^2.3^5.\left(\frac{3}{5}\right)^2\)
\(=\left(5.\frac{3}{5}\right)^2.3^5=3^2.3^5=3^7\)
VIẾT CÁC BIỂU THỨC DƯỚI DẠNG LUỸ THỪA CỦA 1 SỐ HỮU TỈ
\(a,4\cdot\left(\frac{1}{32}\right)^{-2}:\left(2^3\cdot\frac{1}{16}\right)\\ =4\cdot1024:\left(8\cdot\frac{1}{16}\right)\\ =4\cdot1024:\frac{1}{2}\\ =2\cdot1024\\ =2\cdot2^{10}\\ =2^{11}\)
\(b,5^2\cdot3^5\cdot\left(\frac{3}{5}\right)^2\\ =5^2\cdot\left(\frac{3}{5}\right)^2\cdot3^5\\ =3^2\cdot3^5\\ =3^7\)
2 SO SÁNH
\(a,10^{20}\text{ và }9^{10}\)
Có: \(9^{10}=\left(3^2\right)^{10}=3^{20}\)
\(\Rightarrow10^{20}>3^{20}\\ \text{hay}\text{ }10^{20}>9^{10}\)
\(b,\left(-5\right)^3\text{ và }\left(-3\right)^{50}\)
Có: \(\left(-3\right)^{50}=3^{50}\)
\(\Rightarrow\left(-5\right)^3< 3^{50}\\ \text{hay }\left(-5\right)^3< \left(-3\right)^{50}\)
\(c,64^3\text{ và }16^{12}\)
Có: \(64^3=\left(4^3\right)^3=4^9;16^{12}=\left(4^2\right)^{12}=4^{24}\)
\(\Rightarrow4^9< 4^{24}\\ hay\text{ }64^3< 16^{12}\)
\(d,\left(\frac{1}{16}\right)^{10}\text{ và }\left(\frac{1}{2}\right)^{50}\)
Có: \(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2}\right)^{5\cdot10}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{32}\right)^{10}\\ \text{hay }\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
a: \(=\dfrac{3^3\cdot2^6}{3^{-4}\cdot2^6}=3^7\)
b: \(=\left(\dfrac{3}{7}\right)^5\cdot\left(\dfrac{3}{7}\right)\cdot\dfrac{5^6}{3^6}:\left(\dfrac{625}{343}\right)^2\)
\(=\dfrac{3^6}{7^6}\cdot\dfrac{5^6}{3^6}:\dfrac{5^8}{7^6}\)
\(=\dfrac{1}{5^2}\)
c: \(=5^{4+3}\cdot\left(\dfrac{5}{2}\right)^{-5}\cdot\dfrac{1}{25}\)
\(=5^5\cdot\left(\dfrac{2}{5}\right)^5=2^5\)
Bài 1:
\(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\\ \left(\frac{1}{2}\right)^{2n-1}=\left(\frac{1}{2}\right)^3\\ 2n-1=3\\ 2n=3+1\\ 2n=4\\ n=4:2\\ n=2\)
Bài 2:
\(\frac{81}{625}=\left(\frac{3}{5}\right)^4=\left(\frac{9}{25}\right)^2\)
a) \(3^8:3^4=3^{8-4}=3^4\)
b) \(10^8:10^2=10^{8-2}=10^6\)
c) \(a^6:a=a^{6-1}=a^5\)
Áp dụng quy tắc am : an = am - n(a ≠ 0, m ≥ n ).
a) 38 : 34 = 38 – 4 = 34 = 81;
b) 108 : 102 = 108 – 2 = 106 = 1000000
c) a6 : a = a6 – 1 = a5
\(81^3\cdot\frac{1}{9^2}:3^3\)
\(=\left(9^2\right)^3\cdot\frac{1}{9^2}:3^3\)
\(=9^6\cdot\frac{1}{9^2}:3^3\)
\(=9^4:3^3\)
\(=3^8:3^3=3^5\)
a)\(25.5^3.\frac{1}{625}.5^2=5^2.5^3\cdot\frac{1}{5^4}\cdot5^2=5^7\cdot\frac{1}{5^4}=5^3=125\)
b)\(4.32:\left(2^3.\frac{1}{16}\right)=2^2.2^5:\left(2^3\cdot\frac{1}{2^4}\right)=2^7:\left(\frac{1}{2}\right)=2^7.2=2^8=256\)