K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

undefined

đây nhé

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau

27 tháng 7 2017

góc tù thua góc nhọn ,góc nhọn thua góc vuông ,góc vuông thua góc bẹt, góc bẹt góc thua góc bè góc bè thua góc nhọn

27 tháng 7 2017

Gọi xOy và yOz là hai góc kề bù.Ot là phân giác của xOy, Ot' là phân giác của yOz

Ta có:

yOt =1/2 xOy( ot phân giác) (1)

yOt'=1/2 yOx ( ot' phân giác) (2)

xOy+ yOz = 180o( kề bù)

Từ (1) và (2) => yOt+ yOt'=1/2(xOy+yOz)=1/2.180=90o

=>tOt' =90o hay Ot vuông góc với Ot' 

=> ĐPCM

2 tháng 4 2021

1,Cho 2 góc xOy và yOz kề bù .

Om ; On lần lượt là tia phân giác của 2 góc đó 

{ˆO1=ˆO2=12.ˆxOyˆO3=ˆO4=12.ˆyOz⇒{O1^=O2^=12.xOy^O3^=O4^=12.yOz^

ˆO2+ˆO3=12(ˆxOy+ˆyOz)=12.1800=900⇒O2^+O3^=12(xOy^+yOz^)=12.1800=900

=> Đpcm

2 tháng 4 2021

2,

Ta có:

   mOy+nOy=90omOy+nOy=90o( gt )

xOm+zOn=90o⇒xOm+zOn=90o

Mà xOm=mOyxOm=mOy( Om là tia phân giác góc xOy )

nOy=zOn⇒nOy=zOn

On là tia phân giác góc yOz.

2 tháng 9 2016

x O y z t m

Có: \(\widehat{xOz}+\widehat{zOy}=180^o\) (tính chất kề bù)

\(\Rightarrow\frac{1}{2}\widehat{xOz}+\frac{1}{2}\widehat{zOy}=\widehat{zOt}+\widehat{zOm}\)

\(\Rightarrow\frac{1}{2}\left(\widehat{xOz}+\widehat{zOy}\right)=\widehat{zOt}+\widehat{zOm}\)

\(\Rightarrow\frac{1}{2}180^o=\widehat{zOt}+\widehat{zOm}\)

\(\Rightarrow90^o=zOt+zOm\) (vuông góc nên đã chứng minh)

 

30 tháng 4 2018

Chọn đáp án D

21 tháng 11 2018

Chọn C

15 tháng 9 2019

O A B C M N

Gọi AOC và COB là hai góc kề bù , OM và ON theo thứ tự là các tia phân giác của hai góc ấy . Ta có :

\(\widehat{MOC}+\widehat{CON}=\frac{\widehat{AOC}}{2}+\frac{\widehat{COB}}{2}=\frac{\widehat{AOC}+\widehat{COB}}{2}=\frac{180^0}{2}=90^0\)

Ta thấy tia OC nằm giữa hai tia OM và ON nên \(\widehat{MOC}+\widehat{CON}=\widehat{MON}\)

Do đó MON = 900 . Vậy \(OM\perp ON\)

30 tháng 7 2020

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.

* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.

* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy

nên:

{ góc uOz = 1/2 góc xOz

{ góc zOv = 1/2 góc zOy

Suy ra:

{ 2 góc uOz = góc xOz

{ 2 góc zOv = góc zOy

Ta lại có:

góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)

=> 2 góc uOz + 2 góc zOv = 180 độ

=> 2(góc uOz + góc zOv) = 180 độ

=> góc uOz + góc zOv = 90 độ

=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)

=> Tia Ou vuông góc Tia Ov

Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

26 tháng 9 2018

SGK Toán 7

26 tháng 9 2018

trong sgk toán 7 bài định lý hình học có giải nhaa

- tập 1