">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2021

\(8.a,\sqrt{-5x-10}\)

\(-5x-10\ge0\)

\(x\le-2\)

\(b,\sqrt{x^2-2x+1}\)

\(\sqrt{\left(x-1\right)^2}\)

\(\left|x-1\right|\ge0\left(\forall x\right)\)pt vô số nghiệm

\(c,\sqrt{2x^2+4x+5}\)

\(\sqrt{\left(\sqrt{2}x+\sqrt{2}\right)^2+3}\)

\(\sqrt{\left(\sqrt{2}x+\sqrt{2}\right)^2+3}\ge\sqrt{3}>0\)

\(\sqrt{\left(\sqrt{2}x+\sqrt{2}\right)^2+3}>0\left(\forall x\right)\)pt vô số nghiệm

\(d,\sqrt{-x^2+4x-4}\)

\(-x^2+4x-4\ge0\)

\(-\left(x-2\right)^2\ge0\)

\(\hept{\begin{cases}-\left(x-2\right)^2\ge0\\-\left(x-2\right)^2\le0\end{cases}< =>-\left(x-2\right)=0}\)

\(x=2\)

23 tháng 7 2021

Các bạn ơi vào đây giải toán có thưởng nè!

https://tailieugiaoduc.edu.vn/DienDan/Topic/27

23 tháng 9 2021

đi ngủ đê ae 

(1)=x^3-y^3=7
<=>(x-y)(x^2+y^2+xy)=7
<=>(X-y)^3+3xy(x-y)=7
thay(2)vào
=>(x-y)^3+3.2=7
=>x-y=1
thay vào (2)=>=xy=2
=>y^2+y-2=0
___y=1 &-2
=>x=2&-1

(1)=x^3-y^3=7

<=>(x-y)(x^2+y^2+xy)=7

<=>(X-y)^3+3xy(x-y)=7

thay(2)vào

=>(x-y)^3+3.2=7

=>x-y=1

thay vào (2)=>=xy=2

=>y^2+y-2=0

y=1 &-2

=>x=2&-1

23 tháng 9 2021

HPT CÓ 2 NGHIỆMundefined

2 tháng 9 2016

 Bảo Duy Cute sướng wá ha. có ngừi chúc n.n lun

2 tháng 9 2016

uk...thanks e 

DD
7 tháng 11 2021

Bài 1: 

Kẻ \(OM\perp AB\)\(OM\)cắt \(CD\)tại \(N\).

Khi đó \(MN=8cm\).

TH1: \(AB,CD\)nằm cùng phía đối với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)

\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2) 

Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).

TH2: \(AB,CD\)nằm khác phía với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)

\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)

Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).

DD
7 tháng 11 2021

Bài 3: 

Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).

\(MA+MB=MA'+MB\ge A'B\)

Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).

Suy ra \(M\left(\frac{5}{3},0\right)\).

NM
1 tháng 9 2021

ta có :

\(\frac{1}{cos^2x}=\frac{sin^2x+cos^2x}{cos^2x}=1+\left(\frac{sinx}{cosx}\right)^2=1+tan^2x\)

\(\frac{1}{sin^2x}=\frac{sin^2x+cos^2x}{sin^2x}=1+\left(\frac{cosx}{sinx}\right)^2=1+cot^2x\)

22 tháng 7 2021

-11/abc