Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
bạn hỏi từng câu 1 lần thôi cũng đc hỏi 1 lần 17 câu thì thánh nào vô kiên nhẫn trả lời hết đc ^^
a)x3-7x+6
=x3+0x2-7x+6
=x3-x2+x2-x-6x+6
=(x3-x2)+(x2-x)-(6x-6)
=x2(x-1)+x(x-1)-6(x-1)
=(x-1)(x2+x-6)
=(x-1)(x2-2x+3x-6)
=(x-1)[x(x-2)+3(x-2)]
=(x-1)(x+3)(x-2)
\(x^2-3x+xy-3y\)
\(=\left(x^2+xy\right)-\left(3x+3y\right)\)
\(=x.\left(x+y\right)-3.\left(x+y\right)\)
\(=\left(x-3\right).\left(x+y\right)\)
\(2x^2-x+2xy-y\)
\(=2x^2-\left(x-2xy+y\right)\)
\(=2x^2-\left(x-y\right)^2\)
\(=\left(\sqrt{2}x\right)^2-\left(x-y\right)^2\)
\(=\left(\sqrt{2}x-x+y\right).\left(\sqrt{2}x+x-y\right)\)
\(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x.\left(x^2+1\right)\)
\(=\left(x^2+1\right).\left(x^2+1+x\right)\)
\(16+2xy-x^2-y^2\)
\(=16-x^2+2xy-y^2\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=[4-\left(x-y\right)].[4+\left(x-y\right)]\)
\(=\left(4-x+y\right).\left(4+x-y\right)\)
Bài 1:
a) 2x^2 -3x + 1 = 2x^2 -2x -x +1 = 2x.(x-1) - (x-1) = (x-1).(2x-1)
b) 2x^3y - 2xy^3 - 4xy^2 - 2xy = 2xy.(x^2 - y^2 - 2y -1) = 2xy.[ x^2 - (y^2 + 2y+1)] = 2xy.[x^2 - (y+1)^2]
= 2xy.(x-y-1).(x+y+1)
c) (x^2 + x+3).(x^2 + x +5) - 8 = (x^2+x+4-1).(x^2+x+4+1) - 8 = (x^2+x+4)^2 - 1 - 8 = (x^2+x+4)^2 - 3^2
= (x^2+x+4-3).(x^2+x+4+3) = (x^2+x+1).(x^2+x+7)
Bài 2:
a) (x+2).(x^2-2x+4) - (x^3+2x) = 0
x^3 + 8 - x^3 - 2x = 0
8 - 2x = 0
x = 4
b) x^2 - 2x - 8 = 0
x^2 +2x - 4x - 8 = 0
x.(x+2) - 4.(x+2) = 0
(x+2).(x-4) = 0
...
bn tự làm tiếp nha
\(a,xy+1-x-y\)
\(=\left(xy-y\right)+\left(1-x\right)\)
\(=y\left(x-1\right)- \left(x-1\right)\)
\(=\left(x-1\right)\left(y-1\right)\)
\(b,ax+ay-3x-3y\)
\(=a\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(a-3\right)\)
\(c,x^3-2x^2+2x-4\)
\(=x^2\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+2\right)\left(x-2\right)\)
\(d,x^2+ab+ax+bx\)
\(=\left(x^2+ax\right)+\left(ab+bx\right)\)
\(=x\left(a+x\right)+b\left(a+x\right)\)
\(=\left(a+x\right)\left(b+x\right)\)
\(e,16-x^2+2xy-y^2\)
\(=4^2-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
Bài 7: Phân tích đa thức thành nhân tử
a) Ta có: \(a^2-b^2-2a+2b\)
\(=\left(a-b\right)\left(a+b\right)-2\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-2\right)\)
b) Ta có: \(3x-3y-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
c) Ta có: \(16-x^2+4xy-4y^2\)
\(=16-\left(x^2-4xy+4y^2\right)\)
\(=16-\left(x-2y\right)^2\)
\(=\left(4-x+2y\right)\left(4+x-2y\right)\)
d) Ta có: \(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
\(=\left(5-x-4y\right)\left(3x+2y+3\right)\)
e) Ta có: \(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+x\right)\)
f) Ta có: \(\left(x+3\right)^3+\left(x-3\right)^3\)
\(=\left(x+3+x-3\right)\left[\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\right]\)
\(=2x\cdot\left[x^2+6x+9-\left(x^2-9\right)+x^2-6x+9\right]\)
\(=2x\cdot\left(2x^2+18-x^2+9\right)\)
\(=2x\cdot\left(x^2+27\right)\)
g) Ta có: \(9x^2-3xy+y-6x+1\)
\(=\left(9x^2-6x+1\right)-y\left(3x-1\right)\)
\(=\left(3x-1\right)^2-y\left(3x-1\right)\)
\(=\left(3x-1\right)\left(3x-1-y\right)\)
h) Ta có: \(x^3-4x^2+12x-27\)
\(=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)