Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACH}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=AC^2-AH^2=30^2-24^2=324\)
hay HC=18(cm)
Ta có: ΔABC∼ΔHAC(cmt)
nên \(\dfrac{AB}{HA}=\dfrac{BC}{AC}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{24}=\dfrac{BC}{30}=\dfrac{30}{18}=\dfrac{5}{3}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AB}{24}=\dfrac{5}{3}\\\dfrac{BC}{30}=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40\left(cm\right)\\BC=50\left(cm\right)\end{matrix}\right.\)
Vậy: HC=18cm; AB=40cm; BC=50cm
1: Xet ΔABC và ΔHBA có
góc ABC chung
góc BAC=góc BHA
=>ΔABC đồng dạng với ΔHBA
2: \(BC=\sqrt{12^2+16^2}=20\)
AH=16*12/20=9,6
BH=12^2/20=7,2
3: góc AMN=góc HMB=90 độ-góc CBN
góc ANM=90 độ-góc ABN
mà góc CBN=góc ABN
nên góc AMN=góc ANM
=>ΔAMN cân tại A
A B C H 9 12
a) Xét 2 tam giác : ABC và HBA
Có : \(\widehat{BAC}=\widehat{BAH}\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
Do đó : \(\Delta ABC~\Delta HBA\left(g-g\right)\left(đpcm\right)\)
b) +) Áp dụng định lý Py - ta - go , ta có :
\(BC^2=AB^2+AC^2\)
\(=9^2+12^2\)
\(BC=\sqrt{225}=15cm\)
A B C 6 8 H
a, Xét tam giác ABC và tam giác HBA ta có :
^ABC = ^HBA
^BAC = ^BHA = 900
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác HAB và tam giác HCA ta có :
^AHB = ^CHA = 900
^BAH = ^HCA ( phụ nhau )
Vậy tam giác HAB ~ tam giác HCA ( g.g )
\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH.CH\)
c, Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64\Rightarrow BC=10\)cm
Vì tam giác ABC ~ tam giác HBA ( cma )
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)( tỉ lệ thức )
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=\frac{48}{10}=\frac{24}{5}\)cm