\(x^2-7x+a\) chia hết cho 2x-3

b,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

=>a=-12

b: \(\Leftrightarrow ax^5-ax^4+\left(a+5\right)x^4-\left(a+5\right)x^3+\left(a+5\right)x^3-\left(a+5\right)x^2+\left(a+5\right)x^2-\left(a+5\right)x+\left(a+5\right)x-a-5+a-4⋮x-1\)

=>a-4=0

=>a=4

17 tháng 7 2018

Tham khảo nha bạn : http://lazi.vn/edu/exercise/xac-dinh-cac-hang-so-a-va-b-sao-cho-x4-ax-b-chia-het-cho-x2-4-x4-ax-bx-1-chia-het-cho-x2-1

Bài 1:

a: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

b: \(\Leftrightarrow n^2-n-n+1+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

18 tháng 9 2017

4x^2 -6x +a =4x(x-3)+6x +a =4x(x-3)+6(x-3) +a+18

để \(\left(4x^2-6x+a\right)⋮\left(x-3\right)\Rightarrow a=-18\)

10 tháng 11 2017

a) Đặt \(f_{\left(x\right)}=2x^2+x+a\)

Để \(f_{\left(x\right)}⋮x+3\)

\(thì\Rightarrow f_{\left(x\right)}:x+3\text{ }dư\text{ }0\)

\(\Rightarrow\) Theo định lí \(Bê-du:f_{\left(-3\right)}=0\)

\(\Rightarrow2\cdot\left(-3\right)^2+\left(-3\right)+a=0\\ \Rightarrow15+a=0\\ \Rightarrow a=-15\)

Vậy để \(2x^2+x+a⋮x+3\)

\(thì\text{ }a=-15\)

b) Đặt \(f_{\left(x\right)}=4x^2-6x+a\)

Để \(f_{\left(x\right)}⋮x-3\)

\(thì\text{ }f_{\left(x\right)}:x-3\text{ }dư\text{ }0\)

\(\Rightarrow\) Theo định lí \(Bê-du:f_{\left(3\right)}=0\)

\(\Rightarrow4\cdot3^2-6\cdot3+a=0\\ \Rightarrow18+a=0\\ \Rightarrow a=-18\)

Vậy để \(4x^2-6x+a⋮x-3\)

thì \(a=-18\)

c) Đặt \(f_{\left(x\right)}=x^3+ax^2-4\)

Để \(f_{\left(x\right)}⋮x^2+4x+4\)

\(thì\text{ }f_{\left(x\right)}⋮\left(x+2\right)^2\\ \Rightarrow f_{\left(x\right)}:\left(x+2\right)^2\text{ }dư\text{ }0\)

\(\Rightarrow Theo\text{ }định\text{ }lí\text{ }Bê-du:\text{ }f_{\left(-2\right)}=0\\ \Rightarrow\left(-2\right)^3+a\cdot\left(-2\right)^2-4=0\\ \Rightarrow-12+4a=0\\ \Rightarrow4a=12\\ \Rightarrow a=3\)

Vậy để \(x^3+ax^2-4⋮x^2+4x+4\)

\(thì\text{ }a=3\)

26 tháng 8 2017

Ta có : \(x^2+3x-10=x^2+5x-2x-10=x\left(x+5\right)-2\left(x+5\right)=\left(x-2\right)\left(x+5\right)\)

Vì \(\left(ax^3+bx^2+5x-50\right)⋮\left(x^2+3x-10\right)\) nên

 \(\left(ax^3+bx^2+5x-50\right)=\left(x-2\right)\left(x+5\right)H\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}2^3a+b.2^2+5.2-50=0\\-5^3a+b.\left(-5\right)^2+5.\left(-5\right)-50=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8a+4b+10-50=0\\-125a+25b-25-50=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8a+4b=40\\-125a+25b=75\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=8\end{cases}}\)

Vậy \(a=1;b=8\)