Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
Lần sau đăng 3 - 4 ý/câu hỏi thôi :V
1/ -x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1
\(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1\)
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> GTLN = -1 <=> x = 2
2/ -x2 + 2x - 7 = -( x2 - 2x + 1 ) - 6 = -( x - 1 )2 - 6
\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-6\le-6\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> GTLN = -6 <=> x = 1
3/ -x2 - 6x - 10 = -( x2 + 6x + 9 ) - 1 = -( x + 3 )2 - 1
\(-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2-1\le-1\)
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> GTLN = -1 <=> x = -3
4/ -x2 + 2x - 2 = -( x2 - 2x + 1 ) - 1 = -( x - 1 )2 - 1
\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-1\le-1\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> GTLN = -1 <=> x = 1
5/ -9x2 + 24x - 18 = -9( x2 - 8/3x + 16/9 ) - 2 = -9( x - 4/3 )2 - 2
\(-9\left(x-\frac{4}{3}\right)^2\le0\forall x\Rightarrow-9\left(x-\frac{4}{3}\right)^2-2\le-2\)
Đẳng thức xảy ra <=> x - 4/3 = 0 => x = 4/3
=> GTLN = -2 <=> x = 4/3
6/ -4x2 + 4x - 7 = -4( x2 - x + 1/4 ) - 6 = -4( x - 1/2 )2 - 6
\(-4\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-4\left(x-\frac{1}{2}\right)^2-6\le-6\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> GTLN = -6 <=> x = 1/2
7/ -16x2 + 8x - 2 = -16( x2 - 1/2x + 1/16 ) - 1 = -16( x - 1/4 )2 - 1
\(-16\left(x-\frac{1}{4}\right)^2\le0\forall x\Rightarrow-16\left(x-\frac{1}{4}\right)^2-1\le-1\)
Đẳng thức xảy ra <=> x - 1/4 = 0 => x = 1/4
=> GTLN = -1 <=> x = 1/4
8/ -5x2 + 20x - 49 = -5( x2 - 4x + 4 ) - 29 = -5( x - 2 )2 - 29
\(-5\left(x-2\right)^2\le0\forall x\Rightarrow-5\left(x-2\right)^2-29\le-29\)
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> GTLN = -29 <=> x = 2
9/ -x2 + x - 1 = -( x2 - x + 1/4 ) - 3/4 = -( x - 1/2 )2 - 3/4
\(-\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> GTLN = -3/4 <=> x = 1/2
10/ -x2 + 3x - 3 = -( x2 - 3x + 9/4 ) - 3/4 = -( x - 3/2 )2 - 3/4
\(-\left(x-\frac{3}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> GTLN = -3/4 <=> x = 3/2
11/ -x2 + 5x - 8 = -( x2 - 5x + 25/4 ) - 7/4 = -( x - 5/2 )2 - 7/4
\(-\left(x-\frac{5}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{5}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)
Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2
=> GTLN = -7/4 <=> x = 5/2
12/ -9x2 + 12x - 5 = -9( x2 - 4/3x + 4/9 ) - 1 = -9( x - 2/3 )2 - 1
\(-9\left(x-\frac{2}{3}\right)^2\le0\forall x\Rightarrow-9\left(x-\frac{2}{3}\right)^2-1\le-1\)
Đẳng thức xảy ra <=> x - 2/3 = 0 => x = 2/3
=> GTLN = -1 <=> x = 2/3
13/ -x2 - 8x - 19 = -( x2 + 8x + 16 ) - 3 = -( x + 4 )2 - 3
\(-\left(x+4\right)^2\le0\forall x\Rightarrow-\left(x+4\right)^2-3\le-3\)
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> GTLN = -3 <=> x = -4
14/ -x2 + 2/3x - 1 = -( x2 - 2/3x + 1/9 ) - 8/9 = -( x - 1/3 )2 - 8/9
\(-\left(x-\frac{1}{3}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{1}{3}\right)^2-\frac{8}{9}\le-\frac{8}{9}\)
Đẳng thức xảy ra <=> x - 1/3 = 0 => x = 1/3
=> GTLN = -8/9 <=> x = 1/3
Mệt :)
b/ \(3-100x+8x^2=8x^2+x-300\)
\(\Leftrightarrow-101x=-303\)
\(\Rightarrow x=3\)
c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow25x+10-80x+10=24x+12-150\)
\(\Leftrightarrow-79x=-158\)
\(\Rightarrow x=2\)
d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
\(\Leftrightarrow-6x=5\)
\(\Rightarrow x=-\frac{5}{6}\)
e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)
\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)
\(\Leftrightarrow13x=130\)
\(\Rightarrow x=10\)
\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow A_{min}=-3\) khi \(x=2\)
\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)
\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)
\(\Rightarrow C_{max}=21\) khi \(x=-4\)
\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)
\(\Rightarrow E_{max}=5\) khi \(x=2\)
1)Ta có A =x2 - 4x + 1
= x2 - 2.2.x + 22 - 3
= ( x - 2 )2 -3
Với x \(\inℝ\), ( x - 2 )2 \(\ge\)0
\(\Rightarrow\)(x - 2 )2 - 3 \(\ge\)-3
Vậy GTNN của A là -3
2) Ta có B = 4x2 + 4x + 11
= ( 2x )2 + 2.2x.1 + 12 +10
= ( 2x + 1 )2 +10
*tương tự câu 1*
3) *tương tự câu 2*
4) Ta có P = ( 2x + 1 )2 + ( x + 2)2
= [ ( 2x )2 + 2.2x.1 + 12 ] + [ x2 + 2.x.2 + 22 ]
= 4x2 + 4x +1 + x2 + 4x + 4
= 5x2 + 8x + 5
Với x\(\inℝ\), 5x2 \(\ge\)0
mà GTNN của 8x + 5 là 5
\(\Rightarrow\) GTNN của 5x2 + 8x + 5 là 5
Vậy GTNN của ( 2x + 1 )2 + ( x + 2)2 là 5
1, P=5-8x-x^2
= -(x^2+2*4*x+4^2) +21
=-(x+4)^2+21
Vì (x+4)^2> hoặc= 0 nên -(x+4)< hoặc =0=>P< hoặc bằng 21
=>GTLN của P là 21
2,P=4x-x^2+1
=-(x^2-2*2*x+2^2)+5
=-(x-2)^2+5
Tương tự như câu 1, ta có GTLN của P là 5