Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chẵn.chẵn=chẵn
chẵn.lẻ=chẵn
Mà : chẵn+chẵn=chẵn
lẻ+chẵn=lẻ
lẻ+lẻ=chẵn
Mà 3 là số lẻ,6 là số chẵn
⇒cộng với số n nào đó sẽ ra 1 số lẻ và 1 số chẵn
Mà chẵn.lẻ=chẵn
⇒chẵn thì chia hết cho 2
⇒điều phải chứng minh.
(n+3)(n+6)
=(n+3)(n+4+2)
=(n+3)(n+4)+2(n+3)
(n+3),(n+4) là 2 số tự nhiên liên tiếp=>(n+3)(n+4) chia hết cho 2
2(n+3)chia hết cho 2
=>(n+3)(n+4)+2(n+3) chia hết cho 2
hay (n+3)(n+6) chia hết cho 2 với mọi số tự nhiên n
Ta xét hai trường hợp
Nếu n chia hết cho 2 \(\Rightarrow n=2k\left(k\in n\right)\)
\(\Rightarrow\left(n+3\right)\left(n+6\right)=\left(2k+3\right)\left(2k+6\right)\)
\(=2k.2k+2k.6+3.2k+3.6\)
\(=2k^2+2k.6+2k.3+2.9\)
\(=2\left(k^2+6k+3k+9\right)⋮2\)
Nếu n chia cho 2 dư 1 \(\Rightarrow n=2k+1\)
\(\Rightarrow\left(2k+1+3\right)\left(2k+1+6\right)=\left(2k+4\right)\left(2k+7\right)\)
\(=2k.2k+2k.7+2k.4+4.7\)
\(=2k^2+2k.7+2k.4+2.14=2\left(k^2+7k+4k+14\right)⋮2\)
Vậy \(\left(n+3\right)\left(n+6\right)⋮2\left(n\in N\right)\)
scjb
l
lbjsc
jlb jkscd
l D
kc K
đsdCBU
osdob
jvjob
sadvkj
bsd
jkbvdsl
kn
kjbsđ jbo
jkb bjk
ưởqvbuob
khr
wibuvibu
dhoidwhouvwouhdvbiowdobvvudsukhc
owdo
hfdauovoibadPhuo
Gọi (n + 3,n + 2) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+2⋮d\end{cases}}\Leftrightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> (n + 3, n + 2) = 1
=> ĐPCM
b) Gọi (2n + 3; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
=> \(2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)
Khi d = 2 nhận thấy 2n + 3 \(⋮̸\)2 \(\forall n\)
=> d = 2 loại
=> d = 1
=> ĐPCM
a/ Ta có \(\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮6\) Khi đồng thời chia hết cho 2 và 3
\(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là tích của 3 số tự nhiên liên tiếp nên có ít nhất 1 thừa số là chẵn \(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\forall n\)
+ Nếu \(n⋮3\Rightarrow n+3⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
+ Nếu n chia 3 dư 1 \(\Rightarrow n+2⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
+ Nếu n chia 3 dư 2 \(\Rightarrow n+1⋮3\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\forall n\)
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮6\forall n\)
b/
\(\overline{x375y}⋮45\) khi đồng thời chia hết cho 5 và 9
\(\overline{x375y}⋮9\Rightarrow x+3+7+5+y=15+x+y⋮9\Rightarrow x+y=\left\{3;12\right\}\)
\(\overline{x375y}⋮5\Rightarrow y=\left\{0;5\right\}\)
+ Với \(y=0\Rightarrow x=3\Rightarrow\overline{x375y}=33750\)
+ Với \(y=5\Rightarrow x=7\Rightarrow\overline{x375y}=73755\)
c/
\(\frac{6x+45}{2x+3}=\frac{6x+9+36}{2x+3}=\frac{3\left(2x+3\right)+36}{2x+3}=3+\frac{36}{2x+3}\left(x\ne-\frac{3}{2}\right)\)
\(6x+45⋮2x+3\) khi \(36⋮2x+3\) hay 2x+3 là ước của 36
(tiếp)
\(\Rightarrow2x+3=\left\{-36;-18;-12;-9;-6;-4;-3-2;-1;1;2;4;6;9;12;18;36\right\}\)
Từ đó tìm ra x tương ứng
Với \(n\)là số chẵn thì \(n+6\)là số chẵn nên \(\left(n+3\right)\left(n+6\right)\)chia hết cho \(2\).
Với \(n\)là số lẻ thì \(n+3\)là số chẵn nên \(\left(n+3\right)\left(n+6\right)\)chia hết cho \(2\).