Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOHM vuông tại H và ΔOKM vuông tại K có
OM chung
\(\widehat{HOM}=\widehat{KOM}\)
Do đó: ΔOHM=ΔOKM
b: ta có: ΔOHM=ΔOKM
nên MH=MK
hay ΔMHK cân tại M
c: \(\widehat{KMH}=360^0-90^0-90^0-120^0=60^0\)
nênΔMHK đều
a) vì OT là tia phân giác của xoy nên xot =yot , i thuộc ot từ i ta kẻ hai đoạn ik và ih .
ih nằm trong góc xot và ih vuông góc với ox.ik nằm trong góc yot và ik vuông góc với oy. Nên ih=ik.
câu 3 mk chịu bn hỏi thầy cô nha! Nhớ k cho mk nha!
a) vì OT là tia phân giác của xoy nên xot =yot ,
i thuộc ot từ i ta kẻ hai đoạn ik và ih .
ih nằm trong góc xot và ih vuông góc với ox.ik nằm trong góc yot và ik vuông góc với oy.
Nên ih=ik.
a: Ta có: ΔOAB cân tại O
mà OI là đường phân giác
nên I là trung điểm của AB và OI là đường cao
b: Xét ΔIHA vuông tại H và ΔIKB vuông tại K có
IA=IB
\(\widehat{A}=\widehat{B}\)
Do đó: ΔIHA=ΔIKB
Suy ra: AH=BK
Xét \(\Delta ABO\) và \(\Delta ACO\) có :
Góc ABO = Góc ACO ( = 90* )
AO là cạnh huyền chung của 2 tam giác
Góc AOB = Góc AOC ( OA là p/g góc xOy )
=> \(\Delta ABO=\Delta ACO\) ( cạnh huyền - góc nhọn )
=> AB=AC
Vì AB=AC => Tam giác ABC là tam giác cân .
Tick nha !
- Xét 2 tam giác vuông AOC và AOB, ta có :
+ Góc COA bằng góc BOA ( vì OA là tia phân giác của góc xOy )
+ OA là cạnh huyền chung
=> Tam giác AOC bằng AOB ( CH_GN ) => CA = CB ( 2 cạnh tương ứng ) => CAB là tam giác cân tại A
- Trong tam giác cân CAB ta có góc CAB bằng 60 độ ( Vì góc CAO bằng 180 độ trừ cho tổng hai góc AOC + OCA hay nói cách khác là góc CAO = 180 - ( 60 + 90 ) = 30
+ Mà góc CAO bằng góc BAO => góc BAO bằng 30 độ
+ Có ( góc ) CAO + BAO = CAB = 60 độ )
- Vì CAB là tam giác cân có một góc bằng 60 độ suy ra tam giác CAB là tam giác đều