Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm
=> ^SAO = 900 hay tam giác SAO vuông tại A
Theo định lí Pytago tam giác SAO ta có :
\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm
b, Xét tam giác SAO vuông tại A, AH là đường cao
Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm
Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm
c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau )
AO = BO = R
Vậy SO là đường trung trực đoạn AB
mà AH vuông SO => HB vuông SO
=> A;H;B thẳng hàng
ta có :
\(\widehat{OAB}+\widehat{O'AC}=90^o\Rightarrow\hept{\begin{cases}AC=2AO\cos\widehat{OAC}\\AB=2AO'\cos\widehat{O'AB}=2AO'\sin\widehat{OAC}\end{cases}}\)
ta có : \(S_{ABC}=\frac{1}{2}AB.AC=2OA.O'A.\sin\widehat{OAC}.cos\widehat{OAC}\le OA.O'A\left(\sin^2\widehat{OAC}+cos^2\widehat{OAC}\right)=OA.OA'\)
dấu bằng xảy ra khi \(\sin\widehat{OAC}=cos\widehat{OAC}\Rightarrow\widehat{OAC}=45^o\)
từ đó ta xác định được vị trí của B và C
a. Em tự giải
b.
Từ câu a ta có SAOB nội tiếp
Mà \(SA=SB\) (t/c hai tiếp tuyến cắt nhau)
\(\Rightarrow\widehat{SEA}=\widehat{SEB}\) (hai góc nt chắn 2 cùng bằng nhau của đường tròn ngoại tiếp SAOB)
\(\Rightarrow\widehat{AEB}=2\widehat{SEB}\) (1)
Do E là trung điểm CD \(\Rightarrow SE\perp CD\)
\(\Rightarrow E,A,B\) cùng nhìn SO dưới 1 góc vuông nên S,A,E,B,O cùng thuộc 1 đường tròn
Hay SAEB nội tiếp
\(\Rightarrow\widehat{AEB}+\widehat{ASB}=180^0\)
Theo câu a SAOB nội tiếp \(\Rightarrow\widehat{AOB}+\widehat{ASB}=180^0\)
\(\Rightarrow\widehat{AEB}=\widehat{AOB}\) (2)
(1);(2) \(\Rightarrow\widehat{AOB}=2\widehat{SEB}\)