\(\Delta\) : x + 2y – 5 = 0

a) Tính...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

hello

10 tháng 4 2020

hello

25 tháng 4 2017

Ta có \(M\in\Delta_1\Rightarrow M\left(2t+3;t\right)\)

.

Khoảng cách từ M đến đường thẳng \(\Delta_2\)bằng \(\dfrac{1}{\sqrt{2}}\)

\(\Rightarrow\)\(d\left(M,\Delta_2\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\dfrac{\left|2t+3+t+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left|3t+4\right|=1\)\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=\dfrac{-5}{3}\end{matrix}\right.\)

* \(t=-1\)

\(\Rightarrow M\left(1;-1\right)\)

*\(t=\dfrac{-5}{3}\)

\(\Rightarrow M\left(\dfrac{-1}{3};\dfrac{-5}{3}\right)\)

Bài 3:

H thuộc Δ nên H(x;4/5x+3/5)

\(\overrightarrow{AH}=\left(x+1;\dfrac{4}{5}x-\dfrac{12}{5}\right)\)

Δ: 4x-5y+3=0

=>VTPT là (4;-5)

=>VTCP là (5;4)

Theo đề, ta có: 5(x+1)+4(4/5x-12/5)=0

=>5x+5+16/5x-48/5=0

=>31/5x-23/5=0

=>x=23/31

=>y=4/5*23/31+3/5=37/31

a+9b=23/31+9*37/31=356/31

18 tháng 7 2017

Phương trình tổng quát \(\Delta\):

\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0

a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)

Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5

<=> \(5y^2-18y-8=0\)

<=>y=4 và y=\(\dfrac{-2}{5}\)

Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))

b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0

Ta có hệ phương trình:

\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)

\(\begin{cases} x=-2\\ y=1 \end{cases}\)

=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d

c. Nhận thấy, điểm A\(\notin\)\(\Delta\)

Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)

Vì M\(\in\Delta\)=> M(2y-4;y)

Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)\(\overrightarrow{u}\)(2;1)

\(\overrightarrow{AM}\) (2y-4;y-1)

Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)

<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)

<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0

<=> 2(2y-4)+(y-1)=0

<=> 5y-9=0

<=> y= \(\dfrac{9}{5}\)

=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))

Trong mặt phẳng Oxy, cho A(-3; 2), B(1; 4), C(0; 5) và đường thẳng (Δ ): -3x+4y-1=0 a) Viết phương trình tham số các cạnh AB, AC , BCcủa tam giác ABC b) Viết PT tham số đường thẳng d qua A và có véc tơ pháp tuyến \(\overset{\rightarrow}{n}\)( -4;1) c) Viết PT tổng quát đường thẳng d qua B và có véc tơ chỉ phương \(\overrightarrow{u}\)( -4;1) d) Viết phương trình tổng quát các cạnh AB, AC của tam giác ABC e) Viết...
Đọc tiếp

Trong mặt phẳng Oxy, cho A(-3; 2), B(1; 4), C(0; 5) và đường thẳng (Δ ): -3x+4y-1=0
a) Viết phương trình tham số các cạnh AB, AC , BCcủa tam giác ABC
b) Viết PT tham số đường thẳng d qua A và có véc tơ pháp tuyến \(\overset{\rightarrow}{n}\)( -4;1)
c) Viết PT tổng quát đường thẳng d qua B và có véc tơ chỉ phương \(\overrightarrow{u}\)( -4;1)
d) Viết phương trình tổng quát các cạnh AB, AC của tam giác ABC
e) Viết phương trình đường thẳng d qua A và song song với Δ
f) Viết phương trình đường thẳng d’ qua C và vuông góc với đường thẳng Δ
g) Viết phương trình đường tròn (C) tâm B và đi qua điểm C.
h) Viết phương trình đường tròn (C) đường kính AB.
i) Viết phương trình đường tròn (C) đi qua 3 điểm A, B

k) Cho đường thẳng d:\(\left\{{}\begin{matrix}x=2+2t\\y=3+2t\end{matrix}\right.\) Tìm điểm N∈ d sao cho khoảng cách từ N đến đường thẳng \(\Delta\) bằng 3

l) Cho 3 đường thẳng d\(_1\) :x+y+3=0 . d\(_2\) : x-y-4=0 , d\(_3\):x-2y = 0 Tìm điểm M ∈ d\(_3\) để
d (M; d\(_1\)) = 2d (M; d\(_2\))

0
28 tháng 5 2020

Hỏi đáp Toán

27 tháng 5 2020

2: x nha bạn