Bài 6.  Cho
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(AB=\sqrt{20^2-16^2}=12\left(cm\right)\)

CH=16^2/20=256/20=12,8cm

AH=12*16/20=192/20=9,6cm

ΔHAC vuông tại H có AD là phân giác

=>DC/AC=DH/AH

=>DC/5=DH/3=HC/8=12,8/8=1,6

=>DC=8cm

c: góc BAD=90 độ-góc CAD

góc BDA=90 độ-góc HAD

mà góc CAD=góc HAD

nên góc BAD=góc BDA

=>BA=BD=BE

=>ΔDAE vuông tại A

ΔDAE vuông tại A có AH vuông góc DE

nên HD*HE=AH^2

ΔABC vuông tại A có AH vuông góc BC

nên AH^2=HB*HC=HD*HE

22 tháng 3 2015

giả thiết => \(\frac{M\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{N\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{32x-19}{\left(x+1\right)\left(x-2\right)}\)

=> M(x-2) + N(x+1) = 32x - 19

<=> M.x - 2.M + N.x + N = 32.x -19

=> (M+ N).x + (N - 2.M) = 32.x - 19

=> M+ N = 32 và -2M + N = -19 

=> M = 17, N = 15

vậy M.N = 17. 15 =...

18 tháng 6 2020

B C A x y M N 6 8

Vì cậu chỉ nhờ làm phần d nên mk chỉ làm phần d thôi nhé!

Với lại đề của phần d cậu viết nhầm phải sửa thành: \(CM:S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)nữa ạ!

Bài làm:
Ta có: \(\widehat{MAB}+\widehat{BAC}+\widehat{NAC}=180^0\)

\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^0\left(1\right)\)

Xét trong tam giác vuông ANC có \(\widehat{NAC}+\widehat{NCA}=90^0\left(2\right)\)

Từ (1),(2)

=> \(\widehat{NCA}=\widehat{MAB\left(3\right)}\)

Ta có: \(\Delta MBA~\Delta NAC\left(g.g\right)\)

vì \(\hept{\begin{cases}\widehat{NCA}=\widehat{MAB}\left(theo\left(3\right)\right)\\\widehat{BMA}=\widehat{ANC}=90^0\end{cases}}\)

\(\Rightarrow\frac{S_{\Delta AMB}}{S_{\Delta ANC}}=\left(\frac{AB}{AC}\right)^2=\left(\frac{6}{8}\right)^2=\frac{9}{16}\)

\(\Rightarrow S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)

=> đpcm

Chúc bạn học tốt!

15 tháng 3 2022

a) Xét \(\Delta ABC\)và \(\Delta HBA\), ta có:

\(\widehat{B}\)chung, \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)

\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)(đpcm)

b) \(\Delta ABC\)vuông tại A \(\Rightarrow BC^2=AB^2+AC^2\)\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=\sqrt{900+1600}=\sqrt{2500}=50\left(cm\right)\)

Ta có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{30.40}{50}=24\left(cm\right)\)

Vậy \(AH=24cm\)

15 tháng 3 2022

Bạn vào thống kê hỏi đáp của mình xem nhé.

DD
28 tháng 7 2021

\(10^n=11...1\times9+1\)(\(n\)chữ số \(1\)

a) \(b=9a+1+5=9a+6\)

\(ab+1=a\left(9a+6\right)+1=9a^2+6a+1=\left(3a+1\right)^2\)là số chính phương. 

b) Số đó có dạng: \(A=11...155...5+1\)(\(n\)chữ số \(1\)\(n\)chữ số \(5\)

\(a=11...1\)(\(n\)chữ số \(1\))

\(a=a\left(9a+1\right)+5a+1=9a^2+a+5a+1=9a^2+6a+1=\left(3a+1\right)^2\)là số chính phương. 

1.Đường thẳng đi qua hai trung điểm của hai cạnh đối diện của một tứ giác lồi tạo bởi hai đường chéo hai góc bằng nhau.Chứng minh tứ giác ấy có hai đường chéo bằng nhau. 2.Cho tam giác ABC(AB ≠ AC). Trên tia đối của các tia BA,CA lần lượt lấy các điểm D và E sao cho BD=CE. Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh rằng MN song song với tia phân giác của góc A3. Cho hình bình...
Đọc tiếp

1.Đường thẳng đi qua hai trung điểm của hai cạnh đối diện của một tứ giác lồi tạo bởi hai đường chéo hai góc bằng nhau.Chứng minh tứ giác ấy có hai đường chéo bằng nhau.

 

2.Cho tam giác ABC(AB ≠ AC). Trên tia đối của các tia BA,CA lần lượt lấy các điểm D và E sao cho BD=CE. Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh rằng MN song song với tia phân giác của góc A

3. Cho hình bình hành ABCD. Gọi d là đường thẳng qua A và không cắt đoạn thẳng BD. Gọi BB', CC', DD' lần lượt là khoảng cách từ B, C, D đến đường thẳng d (B', C', D' thuộc d). Chứng minh rằng BB' + DD' = CC'

4. Gọi P là trung điểm thuộc cạnh BC (PB khác PC), N là trung điểm của cạnh CD, Q là điểm thuộc cạnh AD (QA khác QD). Biết MNPQ là hình bình hành .CMR: 

giúp mk vs mk đg cần gấp

2

\(3.\)

Gọi O là giao điểm của AC và BD

ABCD là hình bình hành nên O là trung điểm của AC và BD

Vẽ \(OO'\perp d;O'\in d\)

Các đường thẳng \(BB';CC';DD';OO'\)song song với nhau vì cùng vuông góc với đường thẳng d

\(B'D'DB\)là hình thang (Vì \(BB'//DD'\)) có: \(OB=OD;OO'//BB'\)nên \(OO'\)là đường trung bình của hình thang \(B'D'DB\)\(OO'=\frac{1}{2}\left(BB'+DD'\right)\)(*)

Mặt khác \(\Delta ACC'\)\(OO'//CC';OA=OC\)

Nên OO' là đường trung bình của \(\Delta ACC'\)\(OO'=\frac{1}{2}CC'\)(**)

Từ (*) và (**) \(\Rightarrow BB'+DD'=CC'\)

O B' B A O' C' d D' C D

DD
28 tháng 7 2021

Đặt \(a=x+1,b=x+3\)với \(x=11...1\)(\(n\)chữ số \(1\))

\(ab+1=\left(x+1\right)\left(x+3\right)+1=x^2+4x+3+1\)

\(=x^2+4x+4=\left(x+2\right)^2\)

Do đó ta có đpcm. 

1 tháng 1 2021

A{ờ.........................................tao cũng đéo biết chứng minh câu a nữa hì hì!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

B .2534cm2 mày ạ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

C .2345 % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

                                           ~BỐ MÀY CẮT ĐẦU MOI~

1 tháng 1 2021

A B C M D E N P I

a) Xét tứ giác ABME có \(\widehat{DAE}=\widehat{AEM}=\widehat{ADM}=90^0\) => ABME là HCN

b) 

Xét t/giác ABC vuông tại A có AM là đường trung tuyến => AM = BM = MC = 1/2BC

=> tam giác AMC và t/giác AMB cân

t/giác AMB cân tại M có MD là đường cao => MD cx là đường trung tuyến 

=> BD = AD = 1/2AB = 1/2.6 = 3 (cm)

T/giác AMC cân tại M có ME là đường cao => ME cx là đường trung tuyến

=> AE = EC = 1/2AC = 1/2.8 = 4 (cm)

SADME = AD.AE = 3.4 = 12 (cm2)

c) Xét tứ giác AMNC có EM = EN (gt)

 AE = EC (cmt)

MN \(\perp\)AC (gt)

=> AMNC là hình thoi

d) Gọi I là giao điểm của BP với AM

Xét t/giác AIE và t/giác CPE

có: \(\widehat{AIE}=\widehat{CPE}\) (đđ)

  AE = EC (cmt)

 \(\widehat{IAE}=\widehat{ECP}\)(slt vì AM // NC)

=> AIE = t/giác CPE (g.c.g)

=> AI = PC (2 cạnh t/ứng)

CMTT: IM = NP

Xét t/giác ABC có AM và BE là 2 đường trung tuyến cắt nhau tại I

=> I là trong tâm của t/giác ABC => IM/AI = 1/2

=> NP/PC = 1/2