K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
1
20 tháng 9 2017
C=\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
3C=3.( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )
3C-C=( \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\) ) - ( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )
2C= 1 - \(\frac{1}{3^{99}}\)< 1
\(\Rightarrow\)C= \(\left(1-\frac{1}{3^{99}}\right)\div2\)<\(\frac{1}{2}\)
Điều Phải Chứng Minh
NT
0
NT
1
18 tháng 9 2018
Vô lí vì C=1/3+1/3^2 +... luôn lớn hơn 1/3. Chắc là c/m <1/2 đúng ko
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)
\(3C-C=1-\frac{1}{3^{2018}}\)
\(2C=1-\frac{1}{3^{2018}}\)
\(C=\frac{1}{2}-\frac{2}{3^{2018}}< \frac{1}{2}\)
Vậy \(C< \frac{1}{2}\left(đccm\right)\)
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3C=3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)
\(\Rightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(\Rightarrow2C=1-\frac{1}{3^{99}}\)
MÀ \(2C=1-\frac{1}{3^{99}}< 1\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
Từ đó ta suy ra điều phải chứng minh