">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021

Hình bạn tự vẽ được rồi.

a) Xét đường tròn (O) có tiếp tuyến BA tại A nên \(\widehat{BAO}=90^0\)

Xét \(\Delta OBA\)\(\Delta OBC\), ta có:

 \(OA=OB\left(=R\right)\)\(BA=BC\left(gt\right)\)và OB chung \(\Rightarrow\Delta OBA=\Delta OBC\left(c.c.c\right)\Rightarrow\widehat{BAO}=\widehat{BCO}\)

Mà \(\widehat{BAO}=90^0\left(cmt\right)\Rightarrow\widehat{BCO}=90^0\)\(\Rightarrow BC\perp OC\)tại C \(\Rightarrow CB\)là tiếp tuyến tại C của (O;R) (đpcm thứ nhất)

Do \(BA=BC\left(gt\right)\Rightarrow\)B nằm trên đường trung trực của đoạn AC. (1)

Mặt khác \(OA=OC\left(=R\right)\)\(\Rightarrow\)O nằm trên đường trung trực của đoạn AC (2)

Từ (1) và (2) \(\Rightarrow\)OB là đường trung trực của AC \(\Rightarrow OB\perp AC\)(3)

Vì AD là đường kính của (O) nên O là trung điểm AD \(\Rightarrow\)\(OA=\frac{AD}{2}\)và CO là trung tuyến của \(\Delta ACD\)

Lại có \(OC=OA\left(=R\right)\Rightarrow OC=\frac{AD}{2}\left(=OA\right)\)

Xét \(\Delta ACD\)có CO là trung tuyến, mà \(OC=\frac{AD}{2}\Rightarrow\)\(\Delta ACD\)vuông tại C \(\Rightarrow CD\perp AC\)(4)

Từ (3) và (4) \(\Rightarrow CD//OB\left(\perp AC\right)\)(đpcm thứ hai)

b) Gọi E là giao điểm của BC và AD.

\(\Delta ABE\)có \(C\in BE\)\(D\in AE\)và \(CD//OB\left(cmt\right)\)\(\Rightarrow\frac{CD}{OB}=\frac{EC}{EB}\)(hệ quả định lý Ta-lét) (5)

Dễ thấy \(CK//AB\left(\perp AD\right)\), tương tự như trên, ta có: \(\frac{CK}{AB}=\frac{EC}{EB}\)(6)

Từ (5) và (6) \(\Rightarrow\frac{CD}{OB}=\frac{CK}{AB}\left(=\frac{EC}{EB}\right)\Rightarrow CD.AB=OB.CK\)

Lại có \(AB=BC\left(gt\right)\)\(\Rightarrow BC.CD=OB.CK\)(đpcm)

21 tháng 11 2021

chao cac ban minh la tram

23 tháng 9 2021

đi ngủ đê ae 

12 tháng 10 2016

đẹp quá nhở

14 tháng 10 2016

xik lắm eyeu

2 tháng 9 2016

 Bảo Duy Cute sướng wá ha. có ngừi chúc n.n lun

2 tháng 9 2016

uk...thanks e 

DD
14 tháng 10 2021

1.3 Giải phương trình: 

a) \(\sqrt{2x+3}=1+\sqrt{2}\)(ĐK: \(x\ge-\frac{3}{2}\)

\(\Leftrightarrow2x+3=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\)

\(\Leftrightarrow2x=2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{2}\)(tm) 

b) \(\sqrt{x+1}=\sqrt{5}+3\)(ĐK: \(x\ge-1\)

\(\Leftrightarrow x+1=\left(\sqrt{5}+3\right)^2=14+6\sqrt{5}\)

\(\Leftrightarrow x=13+6\sqrt{5}\)(tm) 

c) \(\sqrt{3x-2}=2-\sqrt{3}\)(ĐK: \(x\ge\frac{2}{3}\))

\(\Leftrightarrow3x-2=\left(2-\sqrt{3}\right)^2=7-4\sqrt{3}\)

\(\Leftrightarrow x=\frac{9-4\sqrt{3}}{3}\)(tm) 

1.4: Phân tích thành nhân tử: 

a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)

b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)

\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)

20 tháng 7 2017

Bài 1:

a)

\(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) ĐKXĐ: x >1

\(=\left(\dfrac{2\sqrt{x}.\sqrt{x}}{2.2\sqrt{x}}-\dfrac{2}{2.2\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)^2}-\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{2x-2}{4\sqrt{x}}\right)\left(\dfrac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{\left(x-1\right)^2}\right)\\ =\dfrac{\left(x-1\right).\left(-4x\right)}{2\sqrt{x}.\left(x-1\right)^2}=\dfrac{-2\sqrt{x}}{x-1}\)

b)

Với x >1, ta có:

A > -6 \(\Leftrightarrow\dfrac{-2\sqrt{x}}{x-1}>-6\Rightarrow-2\sqrt{x}>-6\left(x-1\right)\)

\(\Leftrightarrow-2\sqrt{x}+6x-6>0\\ \Leftrightarrow x-\dfrac{2}{6}\sqrt{x}-1>0\\ \Leftrightarrow x-2.\dfrac{1}{6}\sqrt{x}+\left(\dfrac{1}{6}\right)^2>1+\dfrac{1}{36}\\ \Leftrightarrow\left(\sqrt{x}-\dfrac{1}{6}\right)^2>\dfrac{37}{36}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}-\sqrt{x}>\dfrac{\sqrt{37}}{6}\\\sqrt{x}-\dfrac{1}{6}>\dfrac{\sqrt{37}}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}>\dfrac{\sqrt{37}-1}{6}\\\sqrt{x}>\dfrac{\sqrt{37}+1}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{19-\sqrt{37}}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{\sqrt{37}-19}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\)

Vậy không có x để A >-6

20 tháng 7 2017

làm 1 bài đủ nản @_ @

5 tháng 9 2016

Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn

5 tháng 9 2016

Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy 

2 tháng 9 2016

cái này đẹp hơn