\(\sqrt{x+2}\)+5\(\sqrt{x+18}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow3\sqrt{x+2}-x-6+5\sqrt{x+18}-21=0\)

=>\(3\sqrt{x+2}-9+5\sqrt{x+18}-x-18=0\)

=>\(3\left(\sqrt{x+2}-3\right)+\sqrt{x+18}\left(5-\sqrt{x+18}\right)=0\)

=>\(3\cdot\dfrac{x+2-9}{\sqrt{x+2}+3}+\sqrt{x+18}\cdot\dfrac{25-x-18}{5+\sqrt{x+18}}=0\)

=>\(\left(x-7\right)\cdot\left(\dfrac{3}{\sqrt{x+2}+3}-\dfrac{\sqrt{x+18}}{5+\sqrt{x+18}}\right)=0\)

=>x-7=0

=>x=7

 ĐK: \(x\ge\frac{3}{2}\)

 \(\sqrt{2x-3}+3=x\) 

<=> \(\sqrt{2x-3}=x-3\) (đk: \(x\ge3\)

=> \(2x-3=\left(x-3\right)^2\) 

<=> \(2x-3=x^2-6x+9\) 

<=> \(x^2-8x+12=0\) <=> \(\left(x-6\right)\left(x-2\right)=0\) 

=> \(\orbr{\begin{cases}x=6\left(TMĐK\right)\\x=2\left(KTMĐK\right)\end{cases}}\) 

Hai câu sau tương tự nhé bn 

\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\)

<=> \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\) 

<=> \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\) 

<=> \(2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\) 

<=> \(2x=3=>x=\frac{3}{2}\)

\(\sqrt{x^2-2x+2}=x-2\)

\(\Leftrightarrow\sqrt{\left(x^2-2x+2\right)^2}=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-2x+2=x^2-4x+4\)

\(\Leftrightarrow x^2-x^2-2x+4x=4-2\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

1 tháng 9 2019

1) \(\sqrt{x^2-2x+2}\) = x - 2

⇔ x2 - 2x + 2 = x2 - 4x + 4

⇔ x2 - 2x + 2 - x2 + 4x - 4 = 0

⇔ 2x - 2 = 0

⇔ 2x = 2

⇔ x = 1

2) \(\sqrt{2x-3}\) + 3 = x

\(\sqrt{2x-3}\) = x - 3

⇔ 2x - 3 = x2 - 6x + 9

⇔x2 - 6x + 9 - 2x + 3 = 0

⇔ x2 - 8x + 12 = 0

x1 = 6 (nhận)

x2 = 2 (nhận)

Vậy: S = {6;2}

3)\(\sqrt{x^2-2x+4}\) + x - 5 = 0

\(\sqrt{x^2-2x+4}\) = 5 - x

⇔ x2 - 2x + 4 = 25 - 10x + x2

⇔ x2 - 2x + 4 - 25 + 10x - x2 = 0

⇔ 8x - 21 = 0

⇔ 8x = 21

⇔ x = \(\frac{21}{8}\)

8 tháng 11 2016

A=(\(3\sqrt{3}-2\sqrt{3}+6\)).\(\sqrt{3}-4\sqrt{3}\)

=\(\sqrt{3}\left(3-2+2\sqrt{3}\right)\).\(\sqrt{3}-4\sqrt{3}\)

=3(\(3-2+2\sqrt{3}\))-4\(\sqrt{3}\)

=3+2\(\sqrt{3}\)

10 tháng 8 2017

1)

dat \(a=\sqrt[3]{x+1};b=\sqrt[3]{7-x}\)

ta co b=2-a

a^3+b^3=x+1+7-x=8 

a^3+b^3=a^3+b^3+3ab(a+b)

ab(a+b)=0

suy ra a=0 hoac b=0 hoac a=-b

<=> x=-1; x=7 

a=-b

a^3=-b^3

x+1=x+7 (vo li nen vo nghiem)

cau B tuong tu

2)

tat ca cac bai tap deu chung 1 dang do la

\(\sqrt[3]{a+m}+\sqrt[3]{b-m}\)voi m la tham so

dang nay co 2 cach 

C1 lap phuong VD: \(B^3=10+3\sqrt[3]{< 5+2\sqrt{13}>< 5-2\sqrt{13}>}\left(B\right)\)

B^3=10-9B

B=1 cach nay nhanh nhung kho nhin

C2 dat an

\(a=\sqrt[3]{5+2\sqrt{13}};b=\sqrt[3]{5-2\sqrt{13}}\)

de thay B=a+b

a^3+b^3=10

ab=-3

B^3=10-9B

suy ra B=1

tuong tu giai cac cau con lai.

10 tháng 8 2017

Bài 1:

a. Đặt \(a=\sqrt[3]{x+1}\)\(b=\sqrt[3]{7-x}\). Ta có:

\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}\Leftrightarrow a^3+\left(2-a\right)^3=8\Leftrightarrow...\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a=0\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=0\\\sqrt[3]{7-x}=2\end{cases}}\)hoặc \(\hept{\begin{cases}\sqrt[3]{x+1}=2\\\sqrt[3]{7-x}=0\end{cases}}\)

\(\Leftrightarrow x=-1\)hoặc \(x=7\)

3 tháng 1 2018

a) \(\sqrt{x-3}=2\)

\(\Leftrightarrow\) \(x-3=4\)

\(\Leftrightarrow\) \(x=7\)

b) \(\sqrt{x^2-6x+9}=5\) (ĐKXĐ: \(x\ne0\) , \(x\ge3\) )

\(\Leftrightarrow\) \(\sqrt{\left(x-3\right)^2}=5\)

\(\Leftrightarrow\) \(\left|x-3\right|=5\)

\(\Leftrightarrow\) \(x-3=5\) với x > 0

\(x-3=-5\) với x < 0

\(\Leftrightarrow\) \(x=8\) (thỏa mãn)

\(x=-2\) (loại) | NOTE: cũng có thể ghi là không thỏa mãn)

c) \(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\) (ĐKXĐ: \(x\ne0\) )

\(\Leftrightarrow\) \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\)

\(\Leftrightarrow\) \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\)

\(\Leftrightarrow\) \(2x\left(\sqrt{3}+\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\) | Có lẽ không nên làm theo cách này vì nó khá dài dòng|

\(\Leftrightarrow\) \(2x\left(\sqrt{3}+\sqrt{2}\right)-3\left(\sqrt{3}+\sqrt{2}\right)=0\)

\(\Leftrightarrow\) \(\left(2x-3\right)\left(\sqrt{3}+\sqrt{2}\right)=0\)

\(\Leftrightarrow\) \(2x-3=0\) hoặc \(\sqrt{3}+\sqrt{2}=0\) (luôn đúng)

\(\Leftrightarrow\) \(2x=3\)

\(\Leftrightarrow\) \(x=\dfrac{3}{2}\) (thỏa mãn)

25 tháng 12 2017

\(\sqrt{x-3}=2\\ \Rightarrow x-3=4\\ \Rightarrow x=7\)

\(\sqrt{x^2-6x+9}=5\\ \Rightarrow\sqrt{\left(x-3\right)^2}=5\\ \Rightarrow x-3=5\\ \Rightarrow x=8\)

\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\\ \Rightarrow2\sqrt{3}x+3\sqrt{2}=2\sqrt{2}x+3\sqrt{3}\\ \Rightarrow2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\\ \Rightarrow2x=3\\ \Rightarrow x=\dfrac{3}{2}\)

13 tháng 6 2017

Giải câu d thôi mấy câu còn lại đơn giản lắm nên bạn tự làm.

d/ \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

Điều kiện \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(2-\sqrt{x-1}\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=1\)

\(\Leftrightarrow|2-\sqrt{x-1}|+|3-\sqrt{x-1}|=1\)

Đây chỉ là phương trình cơ bản của trị tuyệt đối lớp 6, 7 học rồi nên bạn tự làm nhé.

17 tháng 7 2020

b) ĐK \(3\le x\le5\)(*)

Áp dụng BĐT Bunhiacopsky ta có: \(\sqrt{x-3}+\sqrt{5-x}\le\sqrt{2\cdot\left(x-3+5-x\right)}=\sqrt{4}=2\)

Dấu "=" xảy ra \(\Leftrightarrow x=4\)

Ta lại có \(a^2-8x+18=\left(x-4\right)+2\ge0\forall x\)

Dấu "=" xảy ra <=> x=4

\(\Rightarrow\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\Leftrightarrow x=4\)

Với x=4 thỏa mãn điều kiện (*)

Vậy nghiệm của phương trình là x=4