K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

16 tháng 11 2019

a) b) c) bạn bình phương 2 vế

d) pt <=>3-x=x+3+2.căn(x+2)

<=> -2x=2.căn (x+2)

<=>-x=căn (x+2) (x<=0)

<=> x^2=x+2

<=>x=-1 hoặc x=2

Xong bạn xét ĐKXĐ

16 tháng 11 2019

giải giúp tớ a , b,c luôn đi cậu :<

24 tháng 4 2017

Câu 1:
png.latex?\sqrt{2+\sqrt{3}}^{x}+\sqrt{2-\sqrt{3}}^{x}=2^{x} 
png.latex?\Leftrightarrow%20\sqrt{\frac{2+\sqrt{3}}{4}}^{x}%20+\sqrt{\frac{2-\sqrt{3}}{4}}^{x}%20=1 
Dễ thấy phương trình có x=2 là 1 nghiệm.
Mặt khác ta có: vế trái luôn nghịch biến do
png.latex?y%27=\sqrt{\frac{2+\sqrt{3}}{4}}^{x}ln(\sqrt{\frac{2+\sqrt{3}}{4}})%20+\sqrt{\frac{2-\sqrt{3}}{4}}^{x}ln(\sqrt{\frac{2-\sqrt{3}}{4}})%20%3C0%20\forall%20x 
Vậy phương trình có nghiệm duy nhất x=2

Câu 2:
png.latex?2^{x}+2^{-x}+2=4x-x^2%20\Leftrightarrow%202^{x}+\frac{1}{2^{x}}+2=4x-x^2 
Áp dụng bất đẳng thức Côsi ta có:
png.latex?2^{x}+\frac{1}{2^{x}}%20\geq%202%20\Rightarrow%202^{x}+\frac{1}{2^{x}}+2%20\geq%204 
png.latex?\Rightarrow%204x-x^{2}\geq%204%20\Leftrightarrow%20-(x-2)^{2}\geq%200 
Dễ thấy chỉ xảy ra khi png.latex?x-2=0%20\Leftrightarrow%20x=2 
Mặt khác khi thay x=2 vào vế trái được VT bằng png.latex?%202^{2}+\frac{1}{2^{2}}+2%20%3E4 
Vậy kết luận phương trình đã cho vô nghiệm.

Câu 3:
Tương tự phương pháp như câu 2 ta có:
png.latex?2cos{\frac{x^{2}+x}{6}}=2^{x}+2^{-x} 
png.latex?\Leftrightarrow%201+cos{\frac{x^{2}+x}{3}}=2^{x}+\frac{1}{2^{x}} 
Vế phải png.latex?2^{x}+\frac{1}{2^{x}}%20\geq%202%20\Rightarrow%201+cos{\frac{x^{2}+x}{3}}\geq%202 
png.latex?\Leftrightarrow%20cos{\frac{x^{2}+x}{3}}%20\geq%201 mà png.latex?-1%20\leq%20cos{\frac{x^{2}+x}{3}}%20\leq%201 
Vậy nên chỉ có thể xảy ra khi png.latex?cos{\frac{x^{2}+x}{3}}=1(1) 
Mặt khác ta có để png.latex?2^{x}+\frac{1}{2^{x}}%20=2%20\Leftrightarrow%20x=0 
Thay x=0 vào (1) được png.latex?cos{\frac{0}{3}}=1 (Thoả mãn)
Vậy phương trình đã cho có nghiệm x=0

Câu 4
png.latex?\frac{8^{x}+2^{x}}{4^{x}-2}=5 
Điều kiện là mẫu khác 0 hay x khác png.latex?\frac{1}{2} 
Với điều kiện trên ta có:
png.latex?8^{x}+2^{x}=5(4^{x}-2)%20\Leftrightarrow%20(2^{x})^{3}-5(2^{x})^{2}+2^{x}+10=0 
Bạn đặt png.latex?t=2^{x}(t%3E0) ta được phương trình sau
png.latex?t^{3}-5t^{2}+t+10=0 
Giải phương trình được png.latex?t=2,t=\frac{3+\sqrt{29}}{2} ,png.latex?t=\frac{3-\sqrt{29}}{2} (loại vì t>0)
Vậy cuối cùng giải ra nghiệm của phương trình là:
png.latex?x=1 và png.latex?x=log_{2}%20\frac{3+\sqrt{29}}{2}
 
 
27 tháng 12 2016

câu d sai à bạn?

4 tháng 1 2017

a) Ta có hai trường hợp :

x-3 > (h) = 0 nên x - 3 = 2x - 5

x - 3 < 0 nên 3 - x = 2x - 5

=> x = 2 và x =\(\frac{8}{3}\)

Tương tự với những câu dưới .

c) \(\sqrt{x-2}=3x-1\)

ĐK : x > (h) = \(\frac{1}{3}\)

nên x - 2 = ( 3x + 1 )2

<=> x - 2 = 9x2 + 6x +1 ( phương trình vô nghiệm )