Bài 5: Chứng minh D= 1+3+3^2+...+3^99 chia hết cho 40

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

\(D=1+3+3^2+...+3^{99}\)

\(D=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(D=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)

\(D=40+3^4.40+...+3^{96}.40\)

\(D=40\left(3^4+3^8+...+3^{96}\right)\)

Ta có : \(40⋮40\)

\(\Rightarrow D=40\left(3^4+3^8+...+3^{96}\right)⋮40\)

10 tháng 11 2021

\(A=2+2^2+2^3+2^4+.....2^{100}\)

\(=2.3+2^3.3+....2^{99}.3\)

\(=6\left(1+2^2+....2^{98}\right)⋮6\)

NM
22 tháng 10 2021

ta có :

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=13.3+13.3^4+13.3^7+..+13.3^{58}\text{ nên A chia hết cho 13}\)

b. ta có :

\(M=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+..+\left(2^{18}+2^{20}\right)\)

\(=2.5+2^2.5+2^5.5+2^6.5+..+2^{18}.5\text{ nên B chia hết cho 5}\)

29 tháng 7 2019

Ta có :B = 1 + 3 + 32 + 33 + 34 + 3+ ...  + 397 + 398 + 399

             =  (1 + 3 + 32) + (33 + 34 + 35) + ...  + (397 + 398 + 399)

             =  (1 + 3 + 32) + 33 . (1 + 3 + 32) +...+ 397.(1 + 3 + 32)

             =  13 + 33 . 13 + ... + 397.13

             = 13.(1 + 33+ ... + 397\(⋮\)13

Vậy B\(⋮\)13 (đpcm)

Ta có : B = 1 + 3 + 32 + 33 + 34 + 3+ 36 + 37+ ... + 396 + 397 + 398 + 399

               = (1 + 3 + 32 + 33) + (34 + 3+ 36 + 37) + ... + (396 + 397 + 398 + 399)

               = (1 + 3 + 32 + 33) + 34.(1 + 3 + 32 + 33) + ... + 396.(1 + 3 + 32 + 33)

               = 40 + 34 .40 + ... + 396. 40

               = 40.(1 + 34 + .. + 396\(⋮\)40

Vậy B \(⋮\) 40 (đpcm)

29 tháng 7 2019

a) B=1+3+32+33+...+399

B=(1+3+32)+(33+34+35)+...+(397+398+399)

B=(1+3+32)+33(1+3+32)+...397(1+3+32)

B=13+33.13+...+397.13

B=(1+33+...+97).13

=> b chia hết cho 13

b)B=(1+3+32+33)+...+(396+397+398+399)

B=(1+3+32+33)+34(1+3+32+33)+...+396(1+3+32+33)

B=40+34.40+...+396.40

B=(1+34+...+396).40

=> B hết cho 40

Ok rồi nha:v

10 tháng 11 2016

5+5^2+..+5^98=

(5+5^2+5^3+5^4+5^5+5^6)+..+(5^93+5^94+5^95+5^96+5^97+8^98)chia het cho 126

mấy bài còn lại cung tương tự 

kmình nhé

10 tháng 11 2016

Mình đã giải đc rồi!!!

9 tháng 11 2017

Bài 1: 

a)CMR: ab + ba chia hết cho 11 

Theo đề bài ta có: ab + ba = (10a + b) + (10b + a)

                                         = 11a + 11b chia hết cho 11                                                                                                                                                                                                                                                                                                              b)CMR: abc - cba chia hết cho 99

Theo đề bài ta có: abc - cba = (100a - 10b - c) + (100c - 10b - a)

                                         = 99a - 99c chia hết cho 99

Bài 2

  A= (321 + 322 + 323) + ... + (327 + 328 + 329)                                                                                                                                                                               A= 321.(1 + 3 + 32) + ... + 327. (1 + 3 + 32)                                          

  A=321 . 13 + ... + 327 . 13  

  A= 13 . (321 + ... + 327) chia hết cho 13

27 tháng 9 2015

1+3+32+...+399

= (1+3+32+33)+(34+35+36+37)+....+(396+397+398+399)

= 1(1+3+32+33)+34(1+3+32+33)+.....+396(1+3+32+33)

= 1.40 + 34.40 +.....+ 396.40

= 40.(1+34+....+396) chia hết cho 40 (đpcm)

27 tháng 9 2015

40.(.....) chia hết cho 40