K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

giiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

tok đang hottttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt đó

13 tháng 10 2021

COCACOLAundefined

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MAa) CM: Tứ giác ABEC là hình thoi và tính số đo góc BECb) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?c) CM: Tứ giác ABEF là hình thang când) Điểm C có là trực tâm của tam...
Đọc tiếp

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY

  • 1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MA

a) CM: Tứ giác ABEC là hình thoi và tính số đo góc BEC

b) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?

c) CM: Tứ giác ABEF là hình thang cân

d) Điểm C có là trực tâm của tam giác DBF không ? Giải thích?

  • 2. Cho tam giác ABC(AB<AC), đoạn AI là đường cao và ba điểm D,E,F theo thứ tự là trung điểm của các đoạn thẳng AB,AC,BC. 

a) CM: Tứ giác BDEF là hình bình hànhb) Điểm J là điểm dối xứng của điểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

b) Điểm J là điểm đối xứng của diểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

c) Hai đường thẳng BE,DF cắt nhau tại K. CM : Hai tứ giác ADKE và KECF có diện tích bằng nhau

d) Tính diện tích tam giác ADE theo diện tích tam giác ABC

  • 3. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D là điểm đối xứng của A qua M. Gọi K là trung điểm của MC, E là điểm đối xứng của D qua K.

a) CM: Tứ giác ABDC là hình thoi

b) CM: Tứ giác AMCE là hình chữ nhật

c) AM và BE cắt nhau tại I. CM : I là trung điểm của BE

d) CM: AK,CI,EM đồng quy

  • 4. Cho hình chữ nhật ABCD(AB>AD), trên cạnh AD, BC lần lượt lấy các điểm M,N sao cho AM=CN.

a) CMR: BM song song với DN

b) Gọi O là trung điểm của BD. CMR: AC,BD,MN đồng quy tại O

c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CMR : PBQD là hinh thoi

d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CMR : AC vuông góc với CK.

  • 5. Cho tam giác ABC cân tại Acó M là trung điểm của cạnh BC . Gọi D là điểm đối xứng với A qua M.

a) CM : Tứ giác ABDC là hình thoi

b) Vẽ đường thẳng vuông góc với BC tại B cắt tia CA tại điểm F. CM: Tứ giác ADBF là hình bình hành

c) Qua C vẽ đường thẳng song song với AD cắt tia BA tại điểm E. CM: Tứ giác BCEF là hình chữ nhật

d) Nối EM cắt AC tại N, kéo dài BN cắt EC tại I. CM: SIBC = 1/4 SBCEF

  • 6. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.

a) CM: Tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành

b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. CM: Tứ giác CHFK là hình chữ nhật và I là trung điểm của HK

c) CM: ba điểm E,H,K thẳng hàng

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

14 tháng 1 2016

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH

CM: góc AEK = góc ABC

Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF

=> tam giác EJA cân tại J => AEJ = EAH (1)

Xét tam giác vuông ABH => EAH +ABC = 90

Xét tam giác vuông ABC=> ABC + ACB = 90

=> EAH = ACB  và (1) => ACB = AEJ  (2)

Vì  AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC

=> tam giác ABM cân tại M => EAK = ABC (3)

Xét tam giác EAK: có: AEJ + EAK = ACB + ABC  = 90 ( do 2 và 3)

=> tam giác AEK vuong tại K 

Hay AM vuông EF

4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI

Xét tam giác AID, có: 

H là trung ddierm của AI, M là trung điểm của AD 

=> HM là đường trung bình của tam giác AID => HM // ID

=> tứ giác BIDC là hình thang

Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)

Xét tứ giác ABCD có: 

M là trung điểm BC

M là trung điểm AD

M = BC giao AD

=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật

=> DCB = ABC (DC // AB và solle trong) (5)

Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân

 

 

14 tháng 1 2016

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. 

1: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

2: AM=2,5cm nên BC=5cm

=>AC=4cm

S=3x4/2=6cm2

3: 

Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

Suy ra: góc AFE=góc AHE=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc ACB

=>góc MAC+góc EFA=90 độ

=>AM vuông góc với EF

4: 

Xét ΔADI có

H,M lần lượt là trung điểm của AI và AD

nên HM là đường trung bình

=>HM//DI

=>DI//BC

Xét ΔCIA có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCIA cân tại C

=>CI=CA=DB

=>BIDC là hình thang cân

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

MÌNH CẦN GẤP!! CÁC BẠN GIÚP MÌNH NHA!!! 

0
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

0
20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành