K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

a/Xét \(\Delta AID\&\Delta AIE\) có:

\(\widehat{AID}=\widehat{AIE}=90,\widehat{DAI}=\widehat{EAI}\)

Chung AI

Suy ra: \(\Delta AID=\Delta AIE\left(g-c-g\right)\)

\(\Rightarrow\left\{{}\begin{matrix}ID=IE\\\widehat{ADI}=\widehat{AEI}\left(1\right)\end{matrix}\right.\)

Từ (1)\(\Rightarrow\widehat{BDI}=\widehat{IEC}\)

Tứ giác BDEC có: \(2\widehat{IEC}+\widehat{ABC}+\widehat{ACB}=360\left(2\right)\)

Lại có: BI,IC là ph/giác nên:

\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180\Leftrightarrow2\widehat{BIC}+\widehat{ABC}+\widehat{ACB}=360\left(3\right)\)

Từ (2) và (3) suy ra \(\widehat{IEC}=\widehat{BIC}\)

\(\widehat{ECI}=\widehat{ICB}\Rightarrow\widehat{EIC}=\widehat{IBC}=\widehat{DBI}\) ( tổng 3 góc của tgiac)

Xét \(\Delta DBI\&\Delta EIC\) có:

\(\widehat{EIC}=\widehat{DBI}\)(CMT)

\(\widehat{BDI}=\widehat{IEC}\left(CMT\right)\)

Suy ra : \(\Delta DBI\sim\Delta EIC\left(g-g\right)\)

\(\Rightarrow\frac{BD}{ID}=\frac{IE}{CE}\Rightarrow BD.CE=ID.IE=ID^2=IE^2\left(ID=IE\right)\)

b/Xét \(\Delta DBI\&\Delta IBC\) có:

\(\widehat{DBI}=\widehat{IBC}\)

\(\widehat{BDI}=\widehat{IEC}=\widehat{BIC}\)

Suy ra: \(\Delta DBI\sim\Delta IBC\Rightarrow\frac{DB}{IB}=\frac{IB}{BC}\)

\(\Rightarrow IB^2=BD.BC\)

c/CM tương tự ta cũng có: \(IC^2=CE.BC\)

Vậy \(2IB.IC=2\sqrt{BD.BC}.\sqrt{CE.BC}=2.\sqrt{ID^2}.\sqrt{BC^2}=2.ID.BC=DE.BC\)

cảm ơn bn nha !!!

23 tháng 9 2018

bạn lm bài này ch. gửi cho mk cách lm vs

23 tháng 9 2018

bài này mk làm 2 năm rồi

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC           b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H...
Đọc tiếp

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

2
14 tháng 7 2018

Bài 1 nếu chứng minh cũng chỉ được góc EMD= 2 góc AEM thôi

14 tháng 7 2018

chứng minh kiểu gì vậy

15 tháng 2 2018

Tham khảo bài này :

Cho tam giác ABC  vuông tại A (AB>AC) . Tia phân giác góc B cắt AC tại D. Kẻ DH vuông góc với BC . Trên tia AC lấy điểm E sao cho AE=AB. đường Thẳng vuông góc với Ae tại E cắt DH ở K.

a, cm rằng BA=BH

b, góc DBK = 45 độ

c,Biết AB=4,Tính Chu vi tam giác DEK

ACBDHEKF

a) Xét tam giác BAD và BHD có:

^BAD=^BHD=90o

BD chung

^ABD=^HBD

⇒ΔBAD=ΔBHD  (Cạnh huyền - góc nhọn)

Vậy nên BA = BH (Hai cạnh tương ứng)

b) Kẻ tia Bx vuông góc BA, cắt tia EK tại F.

Ta có ngay BA = AE = BF nên BH = BF.

Từ đó suy ra ΔBHK=ΔBFK  (Cạnh huyền - cạnh góc vuông)

Khi đó ta có: ^HBK=^FBK

Mà ^ABD=^HBD nên ^DBK=^DBH+^HBK=^ABF2 =45o

c) Ta có do các cặp tam giác bằng nhau (cma, cmb) nên DH = DA ; HK = KF

Vậy thì PDKE=DE+DK+DK=DE+DK+DH+HK

=DE+DA+KE+KF=AE+EF=2AB=8(cm)