\(4x^2\left(5x^3-2x+3\right)\)

2) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

a) \(4x^2\left(5x^3-2x+3\right)\)

\(=20x^5-8x^3+12x^2\)

b) \(3y^2\left(4y^3+\frac{2}{3}y^2-\frac{1}{3}\right)\)

\(=12y^5+2y^4-y^2\)

c) \(\left(5x^2-4x\right)\left(x-2\right)\)

\(=5x^3-14x^2+8x\)

d) \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+22x-55-6x^2-23x-21\)

\(=-x-76\)

17 tháng 8 2020

1, \(4x^2\left(5x^3-2x+3\right)=20x^5-8x^3+12x^2\)

2, \(3y^2\left(4y^3+\frac{2}{3}y^2-\frac{1}{3}\right)=12y^5+2y^4-y^2\)

3, \(\left(5x^2-4x\right)\left(x-2\right)=5x^3-10x^2-4x^2+8x=5x^3-14x^2+8x\)

4, \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)=6x^2+33x-10x-55-\left(6x^2+14x+9x+21\right)\)

\(=6x^2+23x-55-6x^2-23x-21=-76\)

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)

17 tháng 8 2020

a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)

b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)

\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)

c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)

d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)

e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)

= 31

f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)

17 tháng 8 2020

a, \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x\)

Thay x = 3 vào biểu thức trên ta cs : \(-3^2-3.3=-9-9=-18\)

b, \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2\)

Thay x = 4 ; y = 5 vào biểu thức trên ta có : \(3.4^2-\frac{12}{5}.5^2=-12\)

21 tháng 10 2020

cau a : (3x^2y-6xy+9x)(-4/3xy)

           =-4/3xy.3x^2y+4/3xy.6xy-4/3xy.9x

           =-4x+8-8y

cau b : (1/3x+2y)(1/9x^2-2/3xy+4y^2)

            =(1/3)^3-2/9x^2y+8y^3+4/3xy^2+2/9x^2y-4/3xy^2+8y^3

             =(1/3)^3 + (2y)^3x-2

cau c :  (x-2)(x^2-5x+1)+x(x^2+11)

            =x^3-5x^2+x-2x^2+10x-2+x^3+11x

            =2x^3-7x^2+22x-2

cau d := x^3 + 6xy^2 -27y^3

cau e := x^3 + 3x^2 -5x - 3x^2y - 9xy = 15y

cau f := x^2-2x+2x -4-2x-1

          = x(x-2)-5

21 tháng 10 2020

cau e la + 15y ko phai =15y

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

12 tháng 7 2017

a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=24-11x\)

b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)

\(=8x^2y-6y^2-9x^2y+12y^2\)

\(=6y^2-x^2y\)

c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)

\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)

\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)

\(=4y^3+y^2+6xy^2\)

a: \(A=2x^2-2xy-y^2+2xy=2x^2-y^2\)

\(=2\cdot\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)

b: \(B=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)

\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)

=1/5-1=-4/5

\(C=x^3+6x^2+12x+8=\left(x+2\right)^3=\left(-9\right)^3=-729\)

d: \(D=20x^3-10x^2+5x-20x^2+10x+4\)

\(=20x^3-30x^2+15x+4\)

\(=20\cdot5^3-30\cdot5^2+15\cdot2+4=1784\)

Bài 1: Rút gọn các biểu thức sau: a) \(3x^2\) - 2x( 5+ 1,5x) +10 b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x) c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\) Bài 2: Tìm x, biết: a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24 b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\) c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\) Bài 3: Tính giá trị của các...
Đọc tiếp

Bài 1: Rút gọn các biểu thức sau:

a) \(3x^2\) - 2x( 5+ 1,5x) +10

b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)

c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)

Bài 2: Tìm x, biết:

a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24

b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)

c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)

Bài 3: Tính giá trị của các biểu thức sau:

a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)

Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:

a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)

b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)

c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

Bài 5: Tính giá trị của biểu thức:

a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)

b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)

c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)

7
AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)

\(=10-10x=10(1-x)\)

b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)

\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)

\(=-7x^2+7x=7x(1-x)\)

c)

\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)

\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)

\(=\left\{3-x-5[9x-2]\right\}(-2x)\)

\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)

\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)

\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)

b)

\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)

\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)

\(2x^2+3(x^2-1)=5x(x+1)\)

1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)

\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )

2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)

\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)

\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )

20 tháng 8 2020

Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))

1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

=> \(-4x^2+28x+4x^3-20x=28x^2-13\)

=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)

=> \(-4x^2+4x^3+8x-28x^2+13=0\)

=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)

=> \(-32x^2+4x^3+8x+13=0\)

=> vô nghiệm

2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)

=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)

=> \(-14x^2-56x+12=0\)

=> .... tự tìm

Câu c dấu bằng chỗ nào ?