K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 10 2021

Bài 4: 

a) \(n+10=n+1+9⋮\left(n+1\right)\Leftrightarrow9⋮\left(n+1\right)\)

mà \(n\)là số tự nhiên nên \(n+1\inƯ\left(9\right)=\left\{-9,-3,-1,1,3,9\right\}\)

\(\Leftrightarrow n\in\left\{-10,-4,-2,0,2,8\right\}\).

b) \(n+10=n-1+11⋮\left(n-1\right)\Leftrightarrow11⋮\left(n-1\right)\)

mà \(n\)là số tự nhiên nên \(n-1\inƯ\left(11\right)=\left\{-11,-1,1,11\right\}\)

\(\Leftrightarrow n\in\left\{-10,0,2,12\right\}\).

c) \(3n+10=3n+3+7=3\left(n+1\right)+7⋮\left(n+1\right)\Leftrightarrow7⋮\left(n+1\right)\)

mà \(n\)là số tự nhiên nên \(n+1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)

\(\Leftrightarrow n\in\left\{-8,-2,0,6\right\}\).

24 tháng 12 2015

a) 3n + 7 chia hết cho n

Ta có : 3n chia hết cho n

       Để 3n + 7 chia hết cho n

      thì 7 phải chia hết cho n

\(\Rightarrow\) \(\in\) \(Ư\left(7\right)=\left\{1;7\right\}\) 

Vậy n \(\in\left\{1;7\right\}\) .

24 tháng 12 2015

Trời ôi !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

19 tháng 1 2016

xin loi , minh lo tay bam gui tra loi , minh giai tiep nhe

n - 1\(\in\)U ( 5 ) = { -5;-1;1;5}

\(\in\)  { -4;0;2;6}

(n-3)+13 chia het cho  n-3 

vi n-3 chia het cho n-3

   nen  13 chia het cho n-3

n-3\(\in\)U ( 13 ) = { -13;-1;1;13}

n  \(\in\){ -10;2;4;16}

(3n - 3) +1 chia het cho n - 1 

3(n-1)+1 chia het cho n - 1 

vi 3 (n-1) chia het cho n - 1 

    nen  1 chia het cho n - 1

n - 1 \(\in\)U ( 1 )= { -1 ; 1} 

\(\in\){ 0 ; 2 } 

tick nha

19 tháng 1 2016

n - 1 - 5 chia het cho n - 1 

vi    n - 1 chia het cho n  -1 

nen 5 chia het cho n- 1 

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

20 tháng 12 2015

tích từ bài từng câu a , b , ... ra đi

21 tháng 10 2015

Bài 1: P là lẻ, vì nếu P chẵn thì P = 2 => P + 4 = 6 là hợp số.

*) P = 3 => P + 4 = 7; P + 20 = 23 => hợp lí.

*) P > 3 => P phải là số không chia hết cho 3 vì nếu nó chia hết cho 3 thì không phải là hợp số (ngoài số 3) 

=> P = 3k + 1 hoặc 3k + 2

+) Với P = 3k + 1 => P + 20 = 3k + 21 chia hết cho 3 => loại

+) Với P = 3k + 2 ==> P + 4 = 3k + 6 chia hết cho 3 => loại

Vậy P chỉ có thể = 3

Bài 2: S = 30 + 31 + 32 + ... + 3123

S = (30 + 31 + 32 + 33) + ... + (3120 + 3121 + 3122 + 3123)

S = 30(1 + 31 + 32 + 33) + ... + 3120.( 1 + 31 + 32 + 33)

S = 30.40 + ... + 3120.40

S = 40.(30 + ... + 3120) = 4.10.40.(30 + ... + 3120

Vì tích chứa 10 => S chia hết cho 10.

21 tháng 10 2015

S = 1 + 3 + 32 + ... + 3123

S = ( 1 + 3 + 32 + 3) + ( 34 + 35 + 36 + 37 ) + ... + ( 3120 + 3121 + 3122 + 3123 )

S = 1.40 + 34(1+3+32+33) + ... + 3120.(1+3+32+33)

S = 1.40 + 34.40 + ... + 3120.40

S = 4.10.(1+34+...+3120) chia hết cho 10

23 tháng 10 2017

120 chia hết co n-1

=> n-1 thuộc Ư(120)

=> n-1 thuộc {1;120;2;60;3;40;4;30;5;24;6;20;8;15;10;12}

=> n thuộc {1+1 ; 120+1 ; 60+1 ; 3+1 ; 40+1 ; 4+1 ; 30+1 ; 5+1 ; 24+1 ; 6+1 ; 20+1 ; 8+1 ; 15+1 ; 10+1 ; 12+1}

=> n thuộc {2;121;61;4;41;5;31;6;25;7;21;9;16;11;13}

vậy n thuộc {2;121;61;4;41;5;31;6;25;7;21;9;16;11;13}

10 chia hết cho n

=> n thuộc Ư(10)

=> n thuộc {1;10;2;5}

vậy n thuộc {1;2;5;10}

20 chia hết cho 2n+1

=>2n+1 thuộc Ư(20)

=>2n+1 thuộc {1;20;2;10;4;5}

=>2n thuộc {1-1;20-1;2-1;10-1;4-1;5-1}

=>2n thuộc (0;19;1;9;3;4)

xét 2n=0

        n=0 : 2 =0 thuộc N(chọn)

xét 2n=19

        n=19 : 2=9,5 không thuộc N(loại)

xét 2n=1

        n=1 : 2 =0,5 không thuộc N(loại)

xét 2n=9

        n=9 : 2 =4,5 không thuộc N(loại)

xét 2n=3

        n=3 : 2 =1,5 không thuộc N(loại)

xét 2n=4

        n=4 : 2=2 thuộc N(chọn)

vậy n thuộc {0;2}

30 tháng 11 2017

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)