Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 10^n:3 dư 1 nên 10^2019 chia 3 dư 1
=> 10^2019 +3 chia 3 dư 1 hay ko chia hết cho 3
=> ko chia hết cho 9
a, ta có : 102019 = 10000....00 ( 2019 số 0 )
102019 + 3 = 10000....03
mà 1 +3 = 4 => 4 ko chia hết cho 3 và 9
=> 102019 + 3 ko chia hết cho 3 và 9
làm bừa. sai xin lỗi
a) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{11}+2^{12}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{11}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{11}\right)⋮3\)
b) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^9+2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^9\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+2^9\right)⋮5\)
c) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{10}\right)⋮7\)
B=1+4+4^2+4^3+......+4^100
4B=4+4^2+4^3+4^4+........+4^101
4B - B = 4^101-1
3B=4^101-1
B=(4^101-1):3
Ví dụ 1: Cách 1:\(D=\left\{0;1;2;3;4;5;6;7\right\}\)
Cách 2: \(D=\left\{x\inℕ|x< 8\right\}\)
Ví dụ 2: A = {Đ, A, N, Ă, G}
Ví dụ 3: Cách 1: \(B=\left\{10;11;12;13;14\right\}\)
Cách 2: \(B=\left\{x\inℕ|9< x< 15\right\}\)
Ví dụ 5: Cách 1: \(B=\left\{0;1;2;3;4;5\right\}\)
Cách 2: \(B=\left\{x\inℕ|x\le5\right\}\)
Ví dụ 6: Cách 1: \(C=\left\{7;8;9;10\right\}\)
Cách 2: \(C=\left\{x\inℕ|6< x\le10\right\}\)
Do 10^n chia 3 dư 1 nên 10^2002 chia 3 dư 1 hay có dạng 3k+1
=> 10^2002-1=3k chia hết cho 3
b, ta có : 102002= 1000...000 ( 2002 số 0 )
=> 102002 -1 = 99999...999 ( 2001 số 9 ) ( chắc vậy )
mà 9 chia hết cho 3 và chính nó => 102002 -1 chia hết cho 3 và 9
sai xin lỗi