Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái tên.. àk mà thôi -_-
\(a)\) \(1+2+3+4+...+n=\frac{n\left(n+1\right)}{2}\)
\(b)\) \(2+4+6+8+...+2n=\left(\frac{2n-2}{2}+1\right)\left(2n+2\right)=\frac{2n\left(2n+2\right)}{2}=2n\left(n+1\right)\)
\(c)\) \(1+3+5+...+\left(2n+1\right)=\left(\frac{2n+1-1}{2}+1\right)\left(2n+1+1\right)=\frac{\left(2n+2\right)\left(2n+2\right)}{2}=\frac{\left(2n+2\right)^2}{2}\)
\(d)\) \(1+4+7+10+...+2005=\left(\frac{2005-1}{3}+1\right)\left(2005+1\right)=1342014\)
\(e)\) \(2+5+...+2006=\left(\frac{2006-2}{3}+1\right)\left(2006+2\right)=1343352\)
\(g)\) \(1+5+9+...+2001=\left(\frac{2001-1}{4}+1\right)\left(2001+1\right)=1003002\)
Chúc bạn học tốt ~
Bài toán 4: Viết các số sau dưới dạng tổng các luỹ thừa của 10.
213 = 2 . 100 + 1 . 10 +3 = 2. 10^2 + 1.10 + 3 . 10^0
421=4.100 + 2.10 + 1 = 4.10^2 + 2.10 + 1. 10^0
2009; = 2. 1000 + 9 = 2. 10^3 + 9 . 10^0
abc = a . 100 + b . 10 + c = a.10^2 + b.10 + c.10^0
abcde = a.10000 + b . 1000 + c . 100 + d . 10 + e = a . 10^4 + b. 10^3 + c.10^2 + d .10 + e . 10 ^0
bn tính theo công thức :( số đầu + số cuối) . số số hạng :2
SSH=(số cuối-số đầu)*khoảng cách+1
Tổng=(số đầu+số cuối)*SSH/2
nhiều quá :((
\(a,2\left(x-5\right)-3\left(x+7\right)=14\)
\(2x-10-3x-21=14\)
\(-x-31=14\)
\(-x=45\)
\(x=45\)
\(b,5\left(x-6\right)-2\left(x+3\right)=12\)
\(5x-30-2x-6=12\)
\(3x-36==12\)
\(3x=48\)
\(x=16\)
\(c,3\left(x-4\right)-\left(8-x\right)=12\)
\(3x-12-8+x=0\)
\(4x-20=0\)
\(4x=20\)
\(x=5\)
Cố nốt nha bn !
cảm ơn, bn nha:)))
mà hình như bạn TOP 3 trả lời câu hỏi pải ko nhỉ???
a) \(1+2+3+4+...+n\)
\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right):2\)
\(=n\left(n+1\right):2\)
\(=\dfrac{n\left(n+1\right)}{2}\)
b) \(2+4+6+..+2n\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
c) \(1+3+5+...+\left(2n+1\right)\)
\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)
\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
d) \(1+4+7+10+...+2005\)
\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)
\(=2006\cdot\left(2004:3+1\right):2\)
\(=2006\cdot\left(668+1\right):2\)
\(=1003\cdot669\)
\(=671007\)
e) \(2+5+8+...+2006\)
\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)
\(=2008\cdot\left(2004:3+1\right):2\)
\(=1004\cdot\left(668+1\right)\)
\(=1004\cdot669\)
\(=671676\)
g) \(1+5+9+...+2001\)
\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)
\(=2002\cdot\left(2000:4+1\right):2\)
\(=1001\cdot\left(500+1\right)\)
\(=1001\cdot501\)
\(=501501\)